Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Số đường thẳng vẽ được là: \(C^2_{20}\left(đường\right)\)
b: Số đường thẳng vẽ được là:
\(C^2_n\left(đường\right)\)
c: SỐ đường thẳng vẽ được là:
\(1+15\cdot5+C^2_{15}=C^2_{15}+76\left(đường\right)\)

giải :
a) Chọn một điểm. Qua điểm đó và từng điểm trong 99 điểm còn lại, ta vẽ được 99 đường thẳng. Làm như vậy với 100 điểm, ta được 99. 100 đường thẳng. Nhưng mỗi đường thẳng đã được tính hai lần, do đó tất cả chỉ có 99. 100 : 2 = 4950 đường thẳng.
b) Cách 1. Giả sử không có ba điểm nào thẳng hàng thì có 4950 đường thẳng. Vì có ba điểm thẳng hàng nên số đường thẳng giảm đi : 3 - 1 = 2 (nếu ba điểm không thẳng hàng thì vẽ được ba đường thẳng, nếu ba điểm thẳng hàng chỉ vẽ được 1 đường thẳng). Vậy có : 4950 - 2 = 4948 (đường thẳng).Cách 2. Chia 100 điểm thành hai tập hợp : tập hợp A gồm ba điểm thẳng hàng, tập B gồm 97 điểm còn lại.Số đường thẳng trong tập hợp A là 1, số đường thẳng trong tập hợp B là 97.962 , số đường thẳng đi qua một điểm thuộc tập hợp A và một điểm thuộc tập hợp B là 97.3Cộng lại ta được : 1 + 4656 + 291 = 4948 (đường thẳng).

a, Khi có 20 điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là 20.(20−1)2=10.19=190(đường thẳng).
Tuy nhiên trong 20 điểm phân biệt đó có đúng 6 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 6 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 6 điểm đó là 6.52=15(đường thẳng).
+ Nếu 6 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 6 điểm đó.
Do đó số đường thằng đi qua 6 điểm thằng hàng đã được tính thành 15 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
190 – 15 + 1 = 176(đường thẳng).
Vậy vẽ được 176 đường thẳng từ 20 điểm đó.
b
Khi có n điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là n(n−1)2 (đường thẳng).
Tuy nhiên trong n điểm phân biệt đó có đúng 7 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 7 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 7 điểm đó là 7.62=21(đường thẳng).
+ Nếu 7 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 7 điểm đó.
Do đó số đường thằng đi qua 7 điểm thằng hàng đã được tính thành 21 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với n điểm phân biệt trong đó có đúng 7 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
n(n−1)2−21+1=n(n−1)2−20 (đường thẳng).
Mà có tất cả 211 đường thẳng
Do đó n(n−1)2−20=211
Hay n(n−1)2=231
Nên n(n – 1) = 462 = 22 . 21
Suy ra n = 22
Vậy có 22 điểm phân biệt.

a) Chọn một điểm. Qua điểm đó và từng điểm trong 99 điểm còn lại, ta vẽ được 99 đường thẳng. Làm như vậy với 100 điểm, ta được 99. 100 đường thẳng. Nhưng mỗi đường thẳng đã được tính hai lần, do đó tất cả chỉ có 99. 100 : 2 = 4950 đường thẳng.
b) Cách 1. Giả sử không có ba điểm nào thẳng hàng thì có 4950 đường thẳng. Vì có ba điểm thẳng hàng nên số đường thẳng giảm đi : 3 - 1 = 2 (nếu ba điểm không thẳng hàng thì vẽ được ba đường thẳng, nếu ba điểm thẳng hàng chỉ vẽ được 1 đường thẳng). Vậy có : 4950 - 2 = 4948 (đường thẳng).
Cách 2. Chia 100 điểm thành hai tập hợp : tập hợp A gồm ba điểm thẳng hàng, tập B gồm 97 điểm còn lại.
Số đường thẳng trong tập hợp A là 1, số đường thẳng trong tập hợp B là \(\frac{97.96}{2}\), số đường thẳng đi qua một điểm thuộc tập hợp A và một điểm thuộc tập hợp B là 97.3
Cộng lại ta được : 1 + 4656 + 291 = 4948 (đường thẳng).
a) Có số đường thẳng là:
100.(100-1):2=450 ( đường thẳng )

a) co so đường thẳng là 20.19:2=190
b) co so duong thang la 20.19=380
?
a: Số đường thẳng vẽ được là:
\(\dfrac{20\left(20-1\right)}{2}=10\cdot19=190\left(đường\right)\)
b: Số đường thẳng vẽ được là \(\dfrac{n\left(n-1\right)}{2}\left(đường\right)\)
c: Số điểm còn lại là 20-5=15(điểm)
TH1: Chọn 1 điểm trong 15 điểm còn lại, 1 điểm trong 5 điểm thẳng hàng
Số đường thẳng là \(15\cdot5=75\left(đường\right)\)
TH2: Chọn 2 điểm trong 15 điểm còn lại
Số đường thẳng vẽ được là \(\dfrac{15\left(15-1\right)}{2}=15\cdot7=105\left(đường\right)\)
Tổng số đường thẳng vẽ được là:
75+105+1=181(đường)