K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3

Phương trình đã cho là:

\(x^{2} + m x + m - 2 = 0\)

Điều kiện để phương trình có nghiệm kép là Δ = 0, tức là:

\(\Delta = b^{2} - 4 a c = 0\)

Với \(a = 1\), \(b = m\), \(c = m - 2\), ta có:

\(m^{2} - 4 \left(\right. 1 \left.\right) \left(\right. m - 2 \left.\right) = 0\) \(m^{2} - 4 m + 8 = 0\)

Giải phương trình bậc hai:

\(\Delta^{'} = \left(\right. - 2 \left.\right)^{2} - 8 = 4 - 8 = - 4\)

\(\Delta^{'} < 0\), phương trình vô nghiệm, nên không có giá trị \(m\) nào thỏa mãn.

Không có đáp án đúng!


12 tháng 2 2017

Ta có​ mx +8=x+m <=> (m-1)x=m-8 <=>x=(m-8)/(m-1) điều kiện m khác 1

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

21 tháng 3 2018

a. 5x2 + 2mx – 2m +15 =0 (1)

Ta có: Δ'=m2 – 5.(-2m +15) = m2 +10m -75

Phương trình (1) có nghiệm kép khi và chỉ khi:

Δ'= 0 ⇔ m2 + 10m – 75 = 0

Δ'm = 52 -1.(-75) = 25 +75 = 100 > 0

√(Δ'm) = √100 =10

Phương trình có 2 nghiệm phân biệt:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy m =5 hoặc m=-15 thì phương trình đã cho có nghiệm kép

b. mx2 – 4(m -1)x -8 =0 (2)

Phương trình (2) có nghiệm kép khi và chỉ khi: m≠ 0 và Δ'=0

Ta có: Δ'=[-2(m-1)]2 – m(-8)=4(m2 -2m +1) +8m

=4m2– 8m +4 +8m = 4m2 +4

Vì 4m2 +4 luôn luôn lớn hơn 0 nên Δ' không thể bằng 0 .Vậy không có giá trị nào của m để phương trình có nghiệm kép

7 tháng 12 2015

a) m \(\ne\)0; \(\Delta'=\left(m-1\right)^2-2m=0\Leftrightarrow m^2-4m+1=0\Leftrightarrow\left(m-2\right)^2=3\)

   =>m=2+ \(\sqrt{3}\) hoặc m=2 -\(\sqrt{3}\) (TM)

b) \(\Delta=\left(m+1\right)^2-4.3.4=0\)=>m =-1 +4\(\sqrt{3}\) hoặc m = -1 - 4\(\sqrt{3}\)

19 tháng 5 2023

​a)m=8

b) �=±6m=±6

c)m=1

 

 

16 tháng 5 2017

a/ Chứng mính 2 nghiệm phân biệt thì \(\Delta>0\)

b/ Dùng định lí vi-ét là ra nha bạn

7 tháng 4 2018

bạn làm được bài này chưa cho mình xin lời giải

Nhiều thế, chắc phải đưa ra đáp thôi

NV
21 tháng 4 2020

a/ \(\left\{{}\begin{matrix}m\ne1\\\Delta'=0-\left(m-1\right)\left(-2m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-1\right)\left(2m-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\)

b/ \(\Delta=\left(2m+1\right)^2-8m>0\)

\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\frac{1}{2}\)

c/ \(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Rightarrow m\ne2\)