K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3

\(x , y\) là số nguyên dương, ta thử các giá trị nhỏ của \(x\):

Thử \(x = 1\):

\(\left(\right. 1 + y \left.\right)^{2} = 4 \left(\right. 1 \left.\right) + 5\) \(\left(\right. 1 + y \left.\right)^{2} = 9 \Rightarrow 1 + y = 3 \Rightarrow y = 2\)

\(\Rightarrow \left(\right. x , y \left.\right) = \left(\right. 1 , 2 \left.\right)\)

Thử \(x = 2\):

\(\left(\right. 2 + y \left.\right)^{2} = 4 \left(\right. 2 \left.\right) + 5\) \(\left(\right. 2 + y \left.\right)^{2} = 13\)

\(13\) không phải là số chính phương, nên không có nghiệm nguyên.

Thử \(x = 3\):

\(\left(\right. 3 + y \left.\right)^{2} = 4 \left(\right. 3 \left.\right) + 5\) \(\left(\right. 3 + y \left.\right)^{2} = 17\)

\(17\) không phải là số chính phương, nên không có nghiệm nguyên.

Thử \(x = 4\):

\(\left(\right. 4 + y \left.\right)^{2} = 4 \left(\right. 4 \left.\right) + 5\) \(\left(\right. 4 + y \left.\right)^{2} = 21\)

\(21\) không phải là số chính phương, nên không có nghiệm nguyên.

Kết luận:

Cặp số nguyên dương duy nhất thỏa mãn phương trình là \(\left(\right. 1 , 2 \left.\right)\). ✅

20 tháng 2 2018

khó quá xem trên mạng

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

13 tháng 1 2019

a)  \(M=\left|x-3\right|+\left|x-5\right|=\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\)

Dấu "=" xra   <=>   \(\left(x-3\right)\left(5-x\right)\ge0\)

                     <=>     \(3\le x\le5\)

Vậy....

7 tháng 12 2015

Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :

http://olm.vn/hoi-dap/question/314450.html