
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E

3)\(\dfrac{-41}{32}\left(\dfrac{15}{8}-\dfrac{16}{41}\right)+\dfrac{15}{8}\left(\dfrac{41}{32}-\dfrac{8}{3}\right)\)
=\(\dfrac{-41}{32}.\dfrac{15}{8}-\dfrac{-41}{32}.\dfrac{16}{41}+\dfrac{15}{8}.\dfrac{41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(\left(\dfrac{-41}{32}.\dfrac{15}{8}+\dfrac{15}{8}.\dfrac{41}{32}\right)+\dfrac{-16}{41}.\dfrac{-41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(0+\dfrac{1}{2}-5=\dfrac{-9}{2}\)
4)\(\dfrac{13}{29}\left(\dfrac{29}{5}-\dfrac{45}{8}\right)-\dfrac{45}{8}\left(\dfrac{9}{8}-\dfrac{13}{29}\right)\)
=\(\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{9}{8}-\dfrac{45}{8}.\dfrac{13}{29}\)
=\(\left(\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{13}{29}\right)-\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{9}{8}\)
=\(0-\dfrac{13}{5}-\dfrac{405}{64}=\dfrac{-2857}{320}\)

7: \(=\dfrac{-12}{7}\cdot15+\dfrac{2}{7}\cdot\left(-15\right)+\left(-105\right)\cdot\dfrac{70-84+15}{105}\)
\(=\dfrac{-12\cdot15+2\cdot\left(-15\right)}{7}-1\)
\(=\dfrac{-15\cdot14}{7}-1=-15\cdot2-1=-31\)
8: \(=\dfrac{13}{29}\cdot\dfrac{29}{5}-\dfrac{13}{29}\cdot\dfrac{45}{8}-\dfrac{45}{8}\cdot\dfrac{9}{8}+\dfrac{45}{8}\cdot\dfrac{13}{29}\)
\(=-\dfrac{1193}{320}\)

a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{13}{38}>\frac{29}{88}\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có: \(3^{301}>3^{300}=\left(3^3\right)^{100}=27^{100}\left(1\right)\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\left(2\right)\)
Do \(25^{100}< 27^{100}\Rightarrow5^{200}< 3^{300}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow5^{199}< 5^{200}< 3^{300}< 3^{301}\Rightarrow5^{199}< 3^{301}\)
c, Ta có: \(\frac{10^{2018}+5}{10^{2018}-8}=\frac{10^{2018}-8+13}{10^{2018}-8}=1+\frac{13}{10^{2018}-8}\)
\(\frac{10^{2019}+5}{10^{2019}-8}=\frac{10^{2019}-8+13}{10^{2019}-8}=1+\frac{13}{10^{2019}-8}\)
Do \(\frac{13}{10^{2018}-8}>\frac{13}{10^{2019}-8}\Rightarrow1+\frac{13}{10^{2018}-8}>1+\frac{13}{10^{2019}-8}\Rightarrow\frac{10^{2018}+5}{10^{2018}-8}>\frac{10^{2019}+5}{10^{2019}-8}\)
\(\left(4\frac{5}{37}-3\frac{4}{5}+8\frac{15}{29}\right)-\left(3\frac{5}{37}-6\frac{14}{29}\right)\)

\(\left(4\frac{5}{37}-3\frac{4}{5}+8\frac{15}{29}\right)-\left(3\frac{5}{37}-6\frac{14}{29}\right)\)


Giải:
Theo bài ra ta có:
\(\frac{-5}{6}+\frac{8}{3}+\frac{29}{-6}\le x\le\frac{-1}{2}+2+\frac{5}{12}\)
\(\Rightarrow-3\le x\le\frac{23}{12}\)
\(\Rightarrow x\varepsilon\left\{-2;-1;0;1\right\}\)
\(\frac{-5}{6}+\frac{16}{6}+-\frac{29}{6}\le x\le\frac{-6}{12}+\frac{24}{12}+\frac{5}{12}\)
=>-3\(\le\) x\(\le\) 23/12
=> x thuộc{-2-1;0;1}
\(\frac{-5}{8}.\frac{-12}{29}.\frac{8}{-10}.\frac{29}{5}\)
\(=\frac{\left(-5_{}\right).\left(-12\right).8.29}{8.29.\left(-10\right).5}\)
\(=-\frac{5_{}.12.8.29}{8.29.10.5}\)
\(=-\frac{12}{10}\)
\(=-\frac65\)
\(\dfrac{-5}{8}.\dfrac{-12}{29}.\dfrac{8}{-10}.\dfrac{29}{5}\)
\(=\dfrac{-5.\left(-12\right).8.29}{8.29.\left(-10\right).5}\)
\(=\dfrac{-1.\left(-6\right)}{\left(-5\right).1}\)
\(=\dfrac{6}{-5}\)
\(=\dfrac{-6}{5}\)