Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017

a) \(\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\left(\frac{4}{8}+\frac{1}{8}\right)\)
= \(\frac{1}{3}-\frac{5}{8}\)
= \(\frac{8}{24}-\frac{15}{24}\)
= \(\frac{-7}{24}\)
b) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{13}+\frac{1}{8}\)
= \(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)\)+ \(\frac{1}{13}\)
= \(\left(\frac{4}{8}-\frac{2}{8}+\frac{1}{8}\right)+\frac{1}{13}\)
= \(\frac{1}{8}+\frac{1}{13}\)
= \(\frac{13}{104}+\frac{8}{104}\)
= \(\frac{23}{104}\)
c) \(13\frac{2}{7}:\left(\frac{-8}{9}\right)+2\frac{5}{7}:\left(\frac{-8}{9}\right)\)
= \(\left(13\frac{2}{7}+2\frac{5}{7}\right):\left(\frac{-8}{9}\right)\)
= \(16:\left(\frac{-8}{9}\right)\)
= -18

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-3}{5}=\frac{y-1}{4}=\frac{\left(x-3\right)-\left(y-1\right)}{5-4}=\frac{x-3-y+1}{1}=\frac{x-y-2}{1}=\frac{8-2}{1}=6\)
\(\Rightarrow\hept{\begin{cases}x=6.5+3=33\\y=6.4+1=25\end{cases}}\)
Vậy \(\hept{\begin{cases}x=33\\y=25\end{cases}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
\(\frac{x-3}{5}=\frac{y-1}{4}=\frac{x-3-y+1}{5-4}=\frac{x-y-2}{1}=\frac{6}{1}=6\)
\(\Leftrightarrow\hept{\begin{cases}x=6.5+3=33\\y=6.4+1=25\end{cases}}\)

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\left(đpcm\right)\)
- 1 số bài toán tương tự:
CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)
Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)

Xét 2 tam giác OAM và tam giác OBM có:
OM là cạnh chung
góc O1 = góc O2 (gt)
OA = OB (gt)
suy ra tam giác OAM = tam giác OBM (c-g-c)
suy ra AM = BM (2 cạnh tương ứng )
suy ra góc M1 = góc M2 (2 góc tương ứng)
mà góc M1 + góc M2 = 180 độ
suy ra góc M1 = góc M2 = 180/2 = 90 độ
suy ra OM vuông góc với AB

để B thuộc Z
=> căn x - 15 chia hết 3
căn x - 15 thuộc B(3)
=> căn x - 15 = 3K (K thuộc Z)
căn x = 3K + 15
x = (3K + 15)2
\(\frac{\sqrt{x}-15}{3}\)=\(\frac{\sqrt{x}}{3}\)-\(\frac{15}{3}\)=\(\frac{\sqrt{x}}{3}\)- 5
vì B thuộc Z => \(\frac{\sqrt{x}}{3}\)- 5 thuộc Z
=> \(\frac{\sqrt{x}}{3}\)thuộc Z
=>\(\sqrt{x}\)chia hết cho 3
=> \(\sqrt{x}\)= 9
vì bạn chưa có vip đó
t muốn làm lại bài!!!!!!!!!!!