
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(a,\frac{x}{3}=\frac{y}{4}\) và x + y = 14
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{4}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
\(b,-2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
Vậy : \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\Rightarrow\hept{\begin{cases}x=50\\y=-20\end{cases}}\)

\(\frac{x}{3}=\frac{y}{4}\) và x + y = 14
áp dụng t/c DTSBN ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{4}=2\end{cases}}\)
=> \(\hept{\begin{cases}x=6\\y=8\end{cases}}\)
câu kia tương tự!!
chúc bạn học tốt!! ^^
546464575475676876876898987905625435465546577657676575643535464565765473
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\times3\\y=2\times4\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=8\end{cases}}\)
b) Có nhầm đề không vậy bạn ?

1) Theo đề bài ta có:
\(\frac{x}{5}=\frac{y}{2}\) và x + y = 14
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
Khi đó:\(\begin{cases}x=5.2=10\\y=2.2=4\end{cases}\)
Vậy x = 10 ; y = 4
2) \(\frac{x}{y}=\frac{4}{7}\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
\(\Rightarrow x.y=28\leftrightarrow4k.7k=28\)
\(28k^2=28\)
\(k^2=1\)
\(k=1;-1\)
+) \(k=1\Rightarrow\begin{cases}x=4\\y=7\end{cases}\)
+\(k=-1\Rightarrow\begin{cases}x=-4\\y=-7\end{cases}\)
Chúc bạn học tốt
1) Có: \(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x+y}{5+2}=\frac{14}{7}=2\)
\(\Leftrightarrow\begin{cases}x=5\cdot2=10\\y=2\cdot2=4\end{cases}\)
2)Có: \(\frac{x}{y}=\frac{4}{7}\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Mà \(xy=28\Leftrightarrow4k\cdot7k=28\Rightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
+) Vơi k =1 thì x=4 ;y=7
+)Với k=-1 thì x=-1;y=-7

<=> 5xy-5y=14-2x
<=> 5y(x-1)=-2(x-7)
=> 5y=\(\frac{-\left(2x-14\right)}{x-1}=-\frac{2x-2-12}{x-1}=-\frac{2\left(x-1\right)}{x-1}+\frac{12}{x-1}=-2+\frac{12}{x-1}\)
=> \(5y=-2+\frac{12}{x-1}\)
Để 5y là số nguyên => 12 chia hết cho (x-1) => x-1={-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
+/ x-1=-12 => x=-11; y=-3/5 (loại)
+/ x-1=-6 => x=-5; y=-4/5 (loại)
+/ x-1=-4 => x=-3; y=-1
+/ x-1=-3 => x=-2; y=-6/5 (loại)
+/ x-1=-2 => x=-1; y=-8/5 (loại)
+/ x-1=-1 => x=0; y=-14/5 (loại)
+/ x-1=1 => x=2; y=2
+/ x-1=2 => x=3; y=4/5 (loại)
+/ x-1=3 => x=4; y=2/5 (loại)
+/ x-1=4 => x=5; y=1/5 (loại)
+/ x-1=6 => x=7; y=0
+/ x-1=12 => x=13; y=-1/5 (loại)
=> Các cặp số x, y thỏa mãn là: (-3; -1); (2; 2); (7; 0)

\(2x-5y+5xy=14\)
\(\Rightarrow x\left(2+5y\right)-5y=14\)
\(\Rightarrow x\left(2+5y\right)-\left(5y+2\right)=12\)
\(\Rightarrow\left(x-1\right)\left(5y+2\right)=12\)
Ta có bảng sau:
...

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
2x=5y => y=2x/5
x+2x/5=-14 => 7x/5=-14 x = -10
y = -4
2x=5y
=>\(\dfrac{x}{5}=\dfrac{y}{2}\)
mà x+y=-14
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{-14}{7}=-2\)
=>\(\left\{{}\begin{matrix}x=-2\cdot5=-10\\y=-2\cdot2=-4\end{matrix}\right.\)