
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Vì x + y = 1 => ( x + y )3 = 1
=> x3 + 3x2y + 3xy2 + y3 = 1
=> x3 + y3 + 3xy ( x + y ) = 1
=> x3 + y3 +3xy = 1 (do x+y=1)
b) x-y=1 => (x-y)3=1
=> x3 - 3x2y + 3xy2 -y3 = 1
=> x3 -y3 - 3xy (x - y) = 1
=> x3 - y3 -3xy =1 (do x-y=1)

a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)
b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)
a) x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1
b) x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

..
x3 + y3 + 3xy = x3 + y3 + 3xy(x + y) (vì x + y = 1)
= x3 + 3x2y + 3xy2 + y3
= (x + y)3
= 13 = 1.
ý b tương tự.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

hẳng đẳng thức tề
(a+b)^2= a^2+2ab+b^2
(a+b)^3= a^3+3a^2b+3ab^2+b^3
a^2-b^2= (a+b)(a-b)
a,\(\left(-\frac{1}{2}x+\frac{1}{4}y^2\right)^2=\left(-\frac{1}{2}x\right)^2+2\left(-\frac{1}{2}x\right).\left(\frac{1}{4}y^2\right)+\left(\frac{1}{4}y^2\right)^2\)
\(=\frac{1}{4}x^2-\frac{1}{4}xy^2+\frac{1}{16}y^4\)
b,\(\left(x+3xy\right)^3=x^3+3.x^2.3xy+3.x.\left(3xy\right)^2+\left(3xy\right)^3\)
\(=x^3+9x^3y+27x^3y^2+27x^3y^3\)
c, \(\left(-2\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{3}+3\sqrt{2}\right)^2\)
\(=\left(-2\sqrt{2}\right)^2+2.\left(-2\sqrt{2}\right).\sqrt{3}+\sqrt{3}^2-\left[\sqrt{3}^2+2.3\sqrt{2}.\sqrt{3}+\left(3\sqrt{2}\right)^2\right]\)
\(=4.2-4.\sqrt{6}+3-3-6\sqrt{6}-9.2\)
\(=-10-10\sqrt{6}\)

chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ


a) x2(5x3 – x - \(\frac{1}{2}\)) = x2. 5x3 + x2 . (-x) + x2 . ( \(-\frac{1}{2}\) )
= 5x5 – x3 – \(\frac{1}{2}\)x2
b) (3xy – x2 + y) \(\frac{2}{3}\)x2y = \(\frac{2}{3}\)x2y . 3xy + \(\frac{2}{3}\)x2y . (- x2) + \(\frac{2}{3}\)x2y .
y = 2x3y2 – \(\frac{2}{3}\)x4y + \(\frac{2}{3}\)x2y2
c) (4x3– 5xy + 2x)( \(-\frac{1}{2}\)xy) = \(-\frac{1}{2}\)xy . 4x3 + ( \(-\frac{1}{2}\)xy) . (-5xy) + ( \(-\frac{1}{2}\)xy) . 2x
= -2x4y + \(\frac{5}{2}\)x2y2 – x2y.
1. Giải phương trình \(x^{3} + 3 x y + y^{3} - 1 = 0\):
Phương trình này có thể là một phương trình bậc ba với hai ẩn \(x\) và \(y\), và nó có thể không có một nghiệm duy nhất mà có thể có vô số nghiệm phụ thuộc vào mối quan hệ giữa \(x\) và \(y\). Để giải phương trình này, ta cần tìm các giá trị của \(x\) và \(y\) thỏa mãn phương trình.
Một cách đơn giản để kiểm tra các nghiệm cụ thể là thử thay các giá trị cho \(x\) và \(y\).
2. Rút gọn biểu thức \(x^{3} + 3 x y + y^{3} - 1\):
Biểu thức này không thể rút gọn thêm nữa một cách đơn giản. Tuy nhiên, nếu bạn muốn kiểm tra các trường hợp cụ thể (ví dụ: \(x = 1\), \(y = 0\), hoặc các giá trị khác), tôi có thể giúp bạn tính toán giá trị của biểu thức.
Thực hiện phép toán với một số giá trị cụ thể:
Giả sử bạn thử các giá trị như sau:
\(1^{3} + 3 \left(\right. 1 \left.\right) \left(\right. 0 \left.\right) + 0^{3} - 1 = 1 + 0 + 0 - 1 = 0\)
Vậy, \(x = 1\) và \(y = 0\) là một nghiệm của phương trình.
\(0^{3} + 3 \left(\right. 0 \left.\right) \left(\right. 1 \left.\right) + 1^{3} - 1 = 0 + 0 + 1 - 1 = 0\)
Vậy, \(x = 0\) và \(y = 1\) cũng là một nghiệm của phương trình.
Kết luận:
Phương trình \(x^{3} + 3 x y + y^{3} - 1 = 0\) có vô số nghiệm, và một số nghiệm tiêu biểu có thể là \(\left(\right. x = 1 , y = 0 \left.\right)\) và \(\left(\right. x = 0 , y = 1 \left.\right)\).