K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3

1. Giải phương trình \(x^{3} + 3 x y + y^{3} - 1 = 0\):

Phương trình này có thể là một phương trình bậc ba với hai ẩn \(x\)\(y\), và nó có thể không có một nghiệm duy nhất mà có thể có vô số nghiệm phụ thuộc vào mối quan hệ giữa \(x\)\(y\). Để giải phương trình này, ta cần tìm các giá trị của \(x\)\(y\) thỏa mãn phương trình.

Một cách đơn giản để kiểm tra các nghiệm cụ thể là thử thay các giá trị cho \(x\)\(y\).

2. Rút gọn biểu thức \(x^{3} + 3 x y + y^{3} - 1\):

Biểu thức này không thể rút gọn thêm nữa một cách đơn giản. Tuy nhiên, nếu bạn muốn kiểm tra các trường hợp cụ thể (ví dụ: \(x = 1\), \(y = 0\), hoặc các giá trị khác), tôi có thể giúp bạn tính toán giá trị của biểu thức.

Thực hiện phép toán với một số giá trị cụ thể:

Giả sử bạn thử các giá trị như sau:

  • Với \(x = 1\)\(y = 0\):

\(1^{3} + 3 \left(\right. 1 \left.\right) \left(\right. 0 \left.\right) + 0^{3} - 1 = 1 + 0 + 0 - 1 = 0\)

Vậy, \(x = 1\)\(y = 0\) là một nghiệm của phương trình.

  • Với \(x = 0\)\(y = 1\):

\(0^{3} + 3 \left(\right. 0 \left.\right) \left(\right. 1 \left.\right) + 1^{3} - 1 = 0 + 0 + 1 - 1 = 0\)

Vậy, \(x = 0\)\(y = 1\) cũng là một nghiệm của phương trình.

Kết luận:

Phương trình \(x^{3} + 3 x y + y^{3} - 1 = 0\) có vô số nghiệm, và một số nghiệm tiêu biểu có thể là \(\left(\right. x = 1 , y = 0 \left.\right)\)\(\left(\right. x = 0 , y = 1 \left.\right)\).

19 tháng 9 2016

a) Vì x + y = 1 => ( x + y )= 1

=> x+ 3x2y + 3xy+ y= 1

=> x3 + y3 + 3xy ( x + y ) = 1

=> x3 + y3 +3xy = 1 (do x+y=1)

b) x-y=1 => (x-y)3=1

=> x- 3x2y + 3xy2 -y3 = 1

=> x3 -y3 - 3xy (x - y) = 1 

=> x3 - y3 -3xy =1 (do x-y=1) 

19 tháng 9 2016

x + y = 1

=> (x + y)= 1

<=> x3 + y+ 3x2y + 3xy= 1

<=> x3 + y+ 3xy (x+y) = 1

<=> x3 + y+ 3xy = 1

Vậy ... = 1

 

x - y = 1

=> (x - y)= 1

<=> x- y- 3x2y + 3xy= 1

<=> x- y- 3xy (x - y) = 1

<=> x- y3 - 3xy = 1

Vậy ... = 1

30 tháng 5 2019

a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)

b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)

3 tháng 10 2020

a) x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

b) x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1

13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

23 tháng 5 2017

..

x3 + y3 + 3xy = x3 + y+ 3xy(x + y)      (vì x + y = 1)

                     = x3 + 3x2y + 3xy2 + y3

                     = (x + y)3

                     = 13 = 1.

ý b tương tự.  

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

18 tháng 5 2021

hẳng đẳng thức tề

(a+b)^2= a^2+2ab+b^2

(a+b)^3= a^3+3a^2b+3ab^2+b^3

a^2-b^2= (a+b)(a-b)

18 tháng 5 2021

a,\(\left(-\frac{1}{2}x+\frac{1}{4}y^2\right)^2=\left(-\frac{1}{2}x\right)^2+2\left(-\frac{1}{2}x\right).\left(\frac{1}{4}y^2\right)+\left(\frac{1}{4}y^2\right)^2\)

\(=\frac{1}{4}x^2-\frac{1}{4}xy^2+\frac{1}{16}y^4\)

b,\(\left(x+3xy\right)^3=x^3+3.x^2.3xy+3.x.\left(3xy\right)^2+\left(3xy\right)^3\)

\(=x^3+9x^3y+27x^3y^2+27x^3y^3\)

c, \(\left(-2\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{3}+3\sqrt{2}\right)^2\)

\(=\left(-2\sqrt{2}\right)^2+2.\left(-2\sqrt{2}\right).\sqrt{3}+\sqrt{3}^2-\left[\sqrt{3}^2+2.3\sqrt{2}.\sqrt{3}+\left(3\sqrt{2}\right)^2\right]\)

\(=4.2-4.\sqrt{6}+3-3-6\sqrt{6}-9.2\)

\(=-10-10\sqrt{6}\)

13 tháng 12 2017

viết đầu bài rõ ràng 1 chút chả hiểu gì cả

13 tháng 12 2017

chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ

28 tháng 1 2020

Thank you.

27 tháng 7 2016

a) x2(5x3 – x - \(\frac{1}{2}\)) = x2. 5x3 + x2 . (-x) + x2 . ( \(-\frac{1}{2}\) )

= 5x5 – x3\(\frac{1}{2}\)x2

b) (3xy – x2 + y) \(\frac{2}{3}\)x2y = \(\frac{2}{3}\)x2y . 3xy + \(\frac{2}{3}\)x2y . (- x2) + \(\frac{2}{3}\)x2y .

y                                    = 2x3y2\(\frac{2}{3}\)x4y + \(\frac{2}{3}\)x2y2

c) (4x3– 5xy + 2x)( \(-\frac{1}{2}\)xy) = \(-\frac{1}{2}\)xy . 4x3 + ( \(-\frac{1}{2}\)xy) . (-5xy) + ( \(-\frac{1}{2}\)xy) . 2x

= -2x4y + \(\frac{5}{2}\)x2y2 – x2y.