Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(x+2x+3x+...+100x=-213\)
\(\Rightarrow x.\left(1+2+3+...+100\right)=-213\)
\(\Rightarrow x.5050=-213\Rightarrow x=\frac{-213}{5050}\)
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-\frac{25}{6}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{-47}{12}\)
\(\Rightarrow\frac{1}{2}x=\frac{-43}{12}\Rightarrow x=\frac{-43}{6}\)
d) \(\frac{x+1}{3}=\frac{x-2}{4}\Rightarrow4\left(x+1\right)=3\left(x-2\right)\Rightarrow4x+4=3x-6\)
\(\Rightarrow4x-3x=-6-4\Rightarrow x=-10\)
c) \(3\left(x-2\right)+2\left(x-1\right)=10\)
\(\Rightarrow3x-6+2x-2=10\)
\(\Rightarrow5x=18\Rightarrow x=\frac{18}{5}\)
a) \(x+2x+3x+4x+...+100x=-213\)
\(x.\left(1+2+3+4+...+100\right)=-213\)
\(x.5050=-213\)
\(x=-\frac{213}{5050}\)
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)
\(\frac{1}{2}x-\frac{1}{3}=-\frac{47}{12}\)
\(\frac{1}{2}x=-\frac{43}{12}\)
\(x=\frac{-43}{6}\)

Ta có:
\(\left(\right. a - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (1)
Và: \(a + 1 = b + 2 = c + 3\)
\(\Rightarrow a = b + 2 - 1 = b + 1\)
Thay vào (1) ta có:
\(\left(\right. b + 1 - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\)
\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (2)
Mà: \(b + 2 = c + 3\)
\(\Rightarrow c = b + 2 - 3 = b - 1\)
Thay vào (2) ta có:
\(\left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 1 - 3 \left.\right) = 0\)
\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 4 \left.\right) = 0\)
\(\Rightarrow \left[\right. b = - \frac{2}{3} \\ b = - \frac{1}{2} \\ b = 4\)
TH1 khi b=\(- \frac{2}{3}\)
\(\Rightarrow a = b + 1 = - \frac{2}{3} + 1 = \frac{1}{3}\)
\(\Rightarrow c = b - 1 = - \frac{2}{3} - 1 = - \frac{5}{3}\)
TH2 khi \(b = - \frac{1}{2}\)
\(\Rightarrow a = b + 1 = - \frac{1}{2} + 1 = \frac{1}{2}\)
\(\Rightarrow c = b - 1 = - \frac{1}{2} - 1 = - \frac{3}{2}\)
TH3 khi \(b = 4\)
\(\Rightarrow a = b + 1 = 4 + 1 = 5\)
\(\Rightarrow c = b - 1 = 4 - 1 = 3\)
sai mình xin lỗi

1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)

a)S=1+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
=>7S=7+(-1/7)^1+(1/7)^2+...+(-1/7)^2006
=>(7-1)S=6-(1/7)^2007
=>S=1-(-1/7^2007/6)

Bài 1: \(\left(\frac{-1}{16}\right)^{100}=\frac{1}{\left(2^4\right)^{100}}=\frac{1}{2^{400}}>\frac{1}{2^{500}}=\left(\frac{-1}{2}\right)^{500}.\)
Bài 2: \(100^{99}+1>100^{68}+1\Rightarrow\frac{1}{100^{99}+1}< \frac{1}{100^{68}+1}\Rightarrow\frac{-99}{100^{99}+1}>\frac{-99}{100^{68}+1}\)
\(\Rightarrow100+\frac{-99}{100^{99}+1}>100+\frac{-99}{100^{68}+1}\Rightarrow\frac{100^{100}+1}{100^{99}+1}>\frac{100^{69}+1}{100^{68}+1}\)

Câu hỏi của Ngô Văn Nam - Toán lớp 6 - Học toán với OnlineMath
\(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\\ =\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{1}{100}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
=99