Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BDFC có
FD//BC
FD=BC
Do đó: BDFC là hình bình hành
Suy ra: DB=FC

a) xét tam giác ADE và tam giác FEC, ta có:
+) AE = EC (E là trung điểm của AC)
+) DE = EF (E là trung điểm của DF)
\(\widehat{ADE}=\widehat{CEF}\)(hai góc đối đỉnh)
=> \(\Delta ADE=\Delta FEC\) (c = g = c)
=> AD = CF (2 cạnh tương ứng)
mà AD = DB (D là trung điểm của AB)
nên: CF = BD
b) ta có:
\(\widehat{EAD}=\widehat{ECF}\left(\Delta ADE=\Delta FEC\right)\)
mà góc EAD và góc ECF nằm so le
nên AD//CF hay AB//CF
xét tam giác BDC và tam giác DCF, ta có:
BD = CF (Cm a)
DC = DC
\(\widehat{BDC}=\widehat{FCD}\)(2 góc so le trong và AB//CF)
=> \(\Delta BDC=\Delta DCF\)(c = g = c)
c) ta có:
\(DE=\frac{1}{2}DF\)(E là trung điểm DF)
DF = BC \(\left(\Delta FCD=\Delta BDC\right)\)
=> \(DE=\frac{1}{2}BC\)

(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM

Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC

a) Xét t/g FEC và t/g DEA có:
FE = DE (gt)
FEC = DEA ( đối đỉnh)
EC = EA (gt)
Do đó, t/g FEC = t/g DEA (c.g.c)
=> FC = DA (2 cạnh tương ứng)
Mà DA = DB (gt) nên FC = DB (đpcm)
b) t/g FEC = t/g DEA (câu a)
=> FCE = DAE (2 góc tương ứng)
Mà FCE và DAE là 2 góc so le trong nên FC // AD hay FC // AB
Xét t/g BDC và t/g FCD có:
BD = FC (câu a)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c) (đpcm)
c) t/g BDC = t/g FCD (câu b) => BC = FD (2 cạnh tương ứng)
BCD = FDC (2 góc tương ứng)
Mà DE = 1/2FD (gt)
BCD và FDC là 2 góc so le trong nên DE // BC; DE = 1/2BC (đpcm)

a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC và DE=BC/2
mà DF=2DE
nên DF//BC và DF=BC
=>DFCB là hình bình hành
Suy ra: DB=CF
b: Xét ΔBDC và ΔFCD có
CD chung
BD=FC
BC=FD
Do đó: ΔBDC=ΔFCD
c: Ta có: DE là đường trung bình
=>DE//BC
d: Ta có: DE là đường trung bình
=>DE=1/2BC
Xét ΔEAD và ΔECF có
EA=EC
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
ED=EF
Do đó: ΔEAD=ΔECF
=>AD=CF
mà AD=DB
nên CF=DB
ΔEAD=ΔECF
=>\(\widehat{EAD}=\widehat{ECF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//CF
=>DB//CF
Xét ΔDBC và ΔCFD có
DB=CF
\(\widehat{BDC}=\widehat{FCD}\)(hai góc so le trong, DB//CF)
DC chung
Do đó: ΔDBC=ΔCFD
Chứng minh các đẳng thức hình học trong tam giác ABC
1. Phân tích bài toán
2. Chứng minh \(D B = C F\)
3. Chứng minh \(\triangle B D C = \triangle F C D\)
\(\triangle B D C = \triangle F C D .\)
Kết luận