K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chào bn, đây là lời giải cho bài toán của bn nhé (nhớ tick mik nếu đúng) :

a) Tìm m để (d1) // (d2)

Hai đường thẳng song song khi và chỉ khi hệ số góc của chúng bằng nhau và hệ số tự do khác nhau. Tức là:

  • m - 4 = 2m
  • 7 ≠ -3 (điều này luôn đúng)

Giải phương trình m - 4 = 2m, ta đc:

  • -m = 4
  • m = -4

Vậy, để (d1) // (d2) thì m = -4.

b) Tìm m để (d1) cắt (d2)

Hai đường thẳng cắt nhau khi và chỉ khi hệ số góc của chúng khác nhau. Tức là:

  • m - 4 ≠ 2m

Giải bất phương trình trên, ta đc:

  • -m ≠ 4
  • m ≠ -4

Vậy, để (d1) cắt (d2) thì m ≠ -4.

c) Tìm m để (d1) = (d2)

Hai đường thẳng trùng nhau khi và chỉ khi hệ số góc và hệ số tự do của chúng đều bằng nhau. Tức là:

  • m - 4 = 2m
  • 7 = -3

Tuy nhiên, 7 không thể bằng -3, vì vậy ko cs giá trị nào của m để (d1) = (d2).

Tóm lại:

  • (d1) // (d2) khi m = -4.
  • (d1) cắt (d2) khi m ≠ -4.
  • Không có giá trị m nào để (d1) = (d2)

Hy vọng lời giải này sẽ giúp ích cho bn!

(Mong bạn đừng hiểu nhầm mình dùng AI nhé!)

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m=m-4\\7\ne-3\left(đúng\right)\end{matrix}\right.\)

=>2m=m-4

=>2m-m=-4

=>m=-4

b: Để (d1) cắt (d2) thì \(2m\ne m-4\)

=>\(2m-m\ne-4\)

=>\(m\ne-4\)

c: Để (d1) trùng với (d2) thì \(\left\{{}\begin{matrix}2m=m-4\\7=-3\left(vôlý\right)\end{matrix}\right.\)

=>\(m\in\varnothing\)

4 tháng 12 2023

a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2

 

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)

=>\(2m-m\ne1+1\)

=>\(m\ne2\)

19 tháng 9 2018

a, H là trực tâm của \(\Delta ABC\left(gt\right)\Rightarrow BH\perp AC,CH\perp AB\)

Mà \(CK\perp AC,BK\perp AB\left(gt\right)\)

\(\Rightarrow BH//CK,CH//BK\)

\(\Rightarrow BHCK\)là hình bình hành.

b, Hình bình hành BHCK có 2 đường chéo BC,HK cắt nhau tại O

\(\Rightarrow O\)là trung điểm của HK.

ON là đường trung bình của \(\Delta AHK\Rightarrow ON=\frac{1}{2}AH\Rightarrow AH=2ON\)

c, Tứ giác ABCK có: \(\widehat{BAC}+\widehat{ABK}+\widehat{ACK}+\widehat{BKC}=360^0\)

                          \(\Rightarrow60^0+90^0+90^0+\widehat{BKC}=360^0\Rightarrow\widehat{BKC}=150^0\)

BH//CK(gt) \(\Rightarrow\widehat{BKC}+\widehat{HCK}=180^0\)

                \(\Rightarrow150^0+\widehat{HCK}=180^0\Rightarrow\widehat{HCK}=30^0\)

BHCK là hình bình hành (cmt) nên \(\hept{\begin{cases}\widehat{BHC}=\widehat{BKC}=150^0\\\widehat{HBK}=\widehat{HCK}=30^0\end{cases}}\) (tính chất hbh)

8 tháng 12 2023

a) Phương trình hoành độ giao điểm của d₁ và d₂

x + 2 = 5 - 2x

⇔ x + 2x = 5 - 2

⇔ 3x = 3

⇔ x = 1

Thay x = 1 vào d₁ ta có:

y = 1 + 2 = 3

⇒ Giao điểm của d₁ và d₂ là A(1; 3)

Thay tọa độ điểm A vào d₃ ta có:

VT = 3

VP = 3.1 = 3

⇒ VT = VP

Hay A ∈ d₃

Vậy d₁, d₂ và d₃ đồng quy

b) Thay tọa độ điểm A(1; 3) vào d₄ ta có:

m.1 + m - 5 = 3

⇔ 2m - 5 = 3

⇔ 2m = 3 + 5

⇔ 2m = 8

⇔ m = 8 : 2

⇔ m = 4

Vậy m = 4 thì d₁, d₂ và d₄ đồng quy

2 tháng 8 2020

Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)

Để y có hai khoảng đồng biến trên toàn miền xác định thì

\(y'\ge0,\forall x\ne2m\)

\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)

\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)

\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)

Câu tiếp theo:

y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)

     \(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)

Để cj suy nghĩ mai lm tiếp=.=

2 tháng 8 2020

rõ ràng m=0 thì đk trên thõa mãn.

Với \(m=0:\Delta'=3m^2>0\) nên ta có:

\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)

\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)

\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)

\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)

Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm

Thay x=2 và y=-1 vào (d1), ta được:

2(2a-1)+b*(-1)=a

=>4a-2-b-a=0

=>3a-b=2(1)

Thay x=2 và y=-1 vào (d2), ta được:

2(b-2)-(a+3)(-1)=1-a

=>2b-4+a+3=1-a

=>a+2b-1-1+a=0

=>2a+2b=2

=>a+b=1(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\3a-b=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4a=3\\a+b=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=\dfrac{1}{4}\end{matrix}\right.\)

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)

=>\(m+1=-\dfrac{1}{2}\)

=>\(m=-\dfrac{3}{2}\)

b: Thay x=2 vào y=x+3, ta được:

\(y=2+3=5\)

Thay x=2 và y=5 vào (d), ta được:

\(2\left(m+1\right)-5=5\)

=>2(m+1)=10

=>m+1=5

=>m=5-1=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)

=>A(0;-5)

\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)

Tọa độ B là:

\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)

=>\(B\left(\dfrac{5}{m+1};0\right)\)

\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)

Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)

Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)

=>\(2\left|m+1\right|=5\)

=>|m+1|=5/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)