
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:Nếu y>0 thì 3^y chia hết cho 3,mà 35 chia 3 dư 2 nên vế phải chia 3 dư 2
Mà vế trái là số chính phương nên vế trái chỉ chia 3 dư 1 hoặc 0
Suy ra mâu thuẫn
Do đó y<=0,mà y là số nguyên ko âm nên y=0
Suy ra x=6

(3-12x)(x-1)+(12x-8)(x+2)+x2=52
3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52
3x-3-12x2+12+12x2+24x-8x-16+x2=52
(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52
19x-7+x2=52
x(19-x)=52+7=59
mà 59 là số ng tố nên x rỗng
Vậy x E \(\theta\)


\(\left(x+1\right)\left(x+4\right)\left(x-2\right)^2=10x^2\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2-4x+4\right)=10x^2\)(1)
Đặt: \(x^2-4x+4=t\)
Khi đó (1) trở thành:
\(\left(t+9x\right).t=10x^2\Leftrightarrow t^2+9xt-10x^2=0\)
\(\Leftrightarrow\left(t-x\right)\left(t+10x\right)=0\Leftrightarrow\orbr{\begin{cases}t=x\\t=-10x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x+4=x\\x^2-4x+4=-10x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+4=0\\x^2+6x+4=0\end{cases}}\)
Nếu \(x^2-5x+4=0\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Nếu \(x^2+6x+4=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}\)

Bài 2:
a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)
b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)
c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)
d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)
e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)
f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)
Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

\(\frac{2}{x^2-2x}+\frac{1}{x}=\frac{x+2}{x-2}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}+\frac{x\left(x+2\right)}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{2+x-2+x^2+2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+3x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x+3}{x-2}=0\)
\(\Rightarrow x+3=0\left(x-2\ne0\right)\)
\(\Leftrightarrow x=-3\)
nêu rõ ra bạn ơi!!