K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

Xác suất để không còn mặt nào hoàn chỉnh sau hai lần xoay Rubik 3x3x3 là:

Xaˊc suaˆˊt=964≈0.140625Xaˊc suaˆˊt=649≈0.140625

Giải thích:

  1. Tổng số khả năng xoay hai lần:
    Tuy nhiên, do không phân biệt hướng quay và chỉ xét mỗi mặt được xoay một lần, tổng số khả năng thực tế là 6 × 6 = 36 (mỗi xoay chọn một mặt, không kể hướng).
    • Lần xoay đầu tiên: 6 mặt, mỗi mặt có 4 hướng xoay (0°, 90°, 180°, 270°) → 6 × 4 = 24 khả năng.
    • Lần xoay thứ hai: Tương tự, cũng có 24 khả năng.
    • Tổng số khả năng: 24 × 24 = 576.
  2. Số khả năng mong muốn (không còn mặt nào hoàn chỉnh):
    Tuy nhiên, cần xem xét lại việc này.
    • Phải xoay hai mặt khác nhau và không phải là mặt đối diện.
    • Số mặt có thể xoay lần hai là 5 (trừ mặt đã xoay lần đầu).
    • Trong 5 mặt này, 1 mặt là mặt đối diện với mặt đầu tiên, 4 mặt còn lại là các mặt kề cận.
    • Chỉ có 4 mặt kề cận là những mặt khi xoay sẽ làm cho các mặt khác bị ảnh hưởng, dẫn đến không còn mặt nào hoàn chỉnh.
    • Số khả năng mong muốn: 4 × 4 = 16 (bốn mặt kề cận, mỗi mặt có 4 hướng xoay).
  3. Tính toán xác suất:
    Thật ra, xác suất chính xác là 9/64, tương đương 0.140625.
    • Nếu tổng số khả năng là 36 và số mong muốn là 9 (theo một số nguồn), thì xác suất là 9/36 = 1/4.
    • Nhưng để chính xác, ta cần tính toán kỹ lưỡng hơn.

Kết luận: Xác suất để không còn mặt nào hoàn chỉnh sau hai lần xoay là 9/64.

Nhận câu trả lời thông minh hơn từ GPT-4o
22 tháng 5 2017

Mặt nón tròn xoay và mặt trụ tròn xoay

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

3 tháng 4 2017

Theo tính chất của mặt cầu, ta có AI và AM là hai tiếp tuyến với cầu kẻ từ A, cho nên AI = AM, tương tự BI =BM. Từ đó hai tam giác ABI và ABM bằng nahau (c.c.c), cho nên các góc tương ứng bằng nhau, tức


NV
22 tháng 3 2019

\(V_1=\pi\int\limits^9_0xdx=\frac{81\pi}{2}\)

Gọi \(M\left(a;\sqrt{a}\right)\) (\(0\le a\le9\)) và \(N\left(a;0\right)\) là hình chiếu của M trên Ox

Khi quay AOM quanh Ox sẽ tạo thành hai hình nón chung đáy với bán kính đáy \(r=MN=y_M=\sqrt{a}\); chiều cao lần lượt là \(ON=x_N=a\)\(OM=x_M-x_N=9-a\)

\(\Rightarrow V_2=\frac{1}{3}\pi\left(\sqrt{a}\right)^2\left(a+9-a\right)=3\pi a\)

\(\Rightarrow\frac{81\pi}{2}=6\pi a\Rightarrow a=\frac{27}{4}\) \(\Rightarrow M\left(\frac{27}{4};\frac{3\sqrt{3}}{2}\right)\)

\(\Rightarrow\) diện tích phần giới hạn:

\(S=\int\limits^{\frac{27}{4}}_0\sqrt{x}dx-\frac{1}{2}.\frac{27}{4}.\frac{3\sqrt{3}}{2}=\frac{27\sqrt{3}}{4}-\frac{81\sqrt{3}}{16}=\frac{27\sqrt{3}}{16}\)

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Vậy \(S=4\pi r^2=4\pi\left(\dfrac{a\sqrt{2}}{2}\right)^2=2\pi a^2\)\(V=\dfrac{4}{3}\pi r^3=\dfrac{4}{3}\pi\left(\dfrac{a\sqrt{2}}{2}\right)^3=\dfrac{1}{3}\pi a^3\sqrt{2}\)

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$

 

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

18 tháng 4 2016

S H B K A I C D

Gọi K là hình chiếu của I lên AB

Suy ra \(\widehat{SKI=60^0}\)

Mà \(\frac{BI}{ID}=\frac{BC}{AD}=\frac{a}{3a}=\frac{1}{2}\)\(\Rightarrow\frac{BI}{BI+ID}=\frac{1}{4}\)\(\Rightarrow\frac{BI}{BD}=\frac{1}{4}\)

Suy ra \(\frac{KI}{DA}=\frac{1}{4}\)\(\Rightarrow KI=\frac{3a}{4}\Rightarrow SI=\frac{3a\sqrt{3}}{4}\)

Do \(IK\) \\ \(AD\Rightarrow\frac{KI}{AD}=\frac{BI}{BD}\)

\(V_{A.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{1}{3}.\frac{3a\sqrt{3}}{4}.\frac{1}{2}\left(a+3a\right)a=\frac{a^3\sqrt{3}}{2}\)

Gọi H là hình chiếu của I trên SK. Ta có \(\begin{cases}AB\perp IK\\AB\perp SI\end{cases}\)\(\Rightarrow AB\perp IH\)

Từ đó suy ra \(IK\perp\left(SAB\right)\Rightarrow d\left(I,\left(SAB\right)\right)=IK\)

Mà do \(DB=4IB\Rightarrow\left(D,\left(SAB\right)\right)=4d\left(I,\left(SAB\right)\right)=4IH\)

Lại có \(\frac{1}{IH^2}=\frac{1}{IS^2}+\frac{1}{IK^2}=\frac{16}{27a^2}+\frac{16}{9a^2}=\frac{64}{27a^2}\Leftrightarrow IH=\frac{3a\sqrt{3}}{8}\)

Vậy  \(d\left(D,\left(SAB\right)\right)=\frac{3a\sqrt{3}}{2}\)