K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Xét (D) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (D) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)AC tại F

Xét tứ giác AEGF có \(\widehat{AEG}+\widehat{AFG}=90^0+90^0=180^0\)

nên AEGF là tứ giác nội tiếp

=>A,E,G,F cùng thuộc một đường tròn

b: Xét (D) có

ΔBIC nội tiếp

BC là đường kính

Do đó: ΔBIC vuông tại I

Xét ΔIBC vuông tại I có IH là đường cao

nên \(BH\cdot BC=BI^2\)

c: Vì B,E,F,C cùng thuộc (D)

nên BEFC là tứ giác nội tiếp

=>\(\widehat{BEF}+\widehat{BCF}=180^0\)

mà \(\widehat{BEF}+\widehat{AEF}=180^0\)(hai góc kề bù)

nên \(\widehat{AEF}=\widehat{ACB}\)

Xét ΔAEC vuông tại E có \(cosEAC=\dfrac{AE}{AC}\)

=>\(\dfrac{AE}{AC}=cos60=\dfrac{1}{2}\)

Xét ΔAEF và ΔACB có

\(\widehat{AEF}=\widehat{ACB}\)

\(\widehat{EAF}\) chung

Do đó: ΔAEF~ΔACB

=>\(\dfrac{EF}{CB}=\dfrac{AE}{AC}\)

=>\(\dfrac{EF}{6}=\dfrac{1}{2}\)

=>EF=3(cm)

4 tháng 2

a) Chứng minh BEC = BFC = 90° ; Từ đó suy ra 4 điểm A, E, G, F cùng thuộc một đường tròn.

Chứng minh BEC = BFC = 90°:

Vì BC là đường kính của đường tròn tâm D, nên E và F là hai điểm nằm trên đường tròn.

Theo tính chất của góc nội tiếp chắn nửa đường tròn, ta có:

∠BEC = ∠BFC = 90°

Suy ra 4 điểm A, E, G, F cùng thuộc một đường tròn:

Xét tứ giác AEGF có:

∠AEG = 90° (do ∠BEC = 90°)

∠AFG = 90° (do ∠BFC = 90°)

Tứ giác AEGF có hai góc đối nhau vuông, nên AEGF là tứ giác nội tiếp.

Vậy 4 điểm A, E, G, F cùng thuộc một đường tròn.

b) Gọi I là giao điểm của (D) và AH (I nằm giữa A và G). Chứng minh BI² = BH.BC

Xét △BIC có BI là đường cao, ta có:

BI² = BH.BC (hệ thức lượng trong tam giác vuông)

c) Trong trường hợp BAC = 60° và BC = 6cm. Tính bán kính của đường tròn ngoại tiếp ∆AEF.

Tính BC:

Vì △ABC có ∠BAC = 60° và AB = AC, nên △ABC là tam giác đều. ⇒ AB = AC = BC = 6cm

Tính AE và AF:

Vì E và F lần lượt là hình chiếu của B và C trên AB và AC, nên AE và AF lần lượt là đường cao của △ABC.

Trong tam giác đều, đường cao cũng là đường trung tuyến, nên AE = AF = (1/2)AB = (1/2)AC = 3cm

Tính bán kính đường tròn ngoại tiếp △AEF:

Gọi R là bán kính đường tròn ngoại tiếp △AEF.

Theo công thức bán kính đường tròn ngoại tiếp tam giác, ta có: R = (AE.AF.EF) / (4.S△AEF)

Trong đó: EF = BC = 6cm (do AEGF là hình chữ nhật)

S△AEF = (1/2).AE.AF.sin∠EAF = (1/2).3.3.sin60° = (9√3)/4 cm²

Thay số vào công thức, ta được:

R = (3.3.6) / (4.(9√3)/4) = 2√3 cm

Kết luận:

Bán kính của đường tròn ngoại tiếp △AEF là 2√3 cm.

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

NV
20 tháng 1 2024

a. Câu này đơn giản em tự giải

b.

Xét hai tam giác OIM và OHN có:

\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)

\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)

Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)

Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)

\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)

\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)

c.

Xét hai tam giác OAI và ONA có:

\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))

\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)

Xét hai tam giác OCN và OIC có:

\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)

\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C

\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)

Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:

\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)

O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC

\(\Rightarrow OH=\dfrac{1}{2}BC\)

Xét hai tam giác OHN và EBC có:

\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)

\(\Rightarrow BC^2=2HN.EB\) (2)

(1);(2) \(\Rightarrow BN.BH=HN.BE\)

\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)

\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

NV
20 tháng 1 2024

loading...

3 tháng 8 2023

Đáp án b

Các hình màu xanh là phản chiếu của các hình máu cam trong gương.

3 tháng 8 2023

Nhìn sơ sơ đoán là chọn B

Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

15 tháng 10 2023

b) \(\sqrt{x^2}=\left|-8\right|\)

\(\Rightarrow\left|x\right|=8\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

d) \(\sqrt{9x^2}=\left|-12\right|\)

\(\Rightarrow\sqrt{\left(3x\right)^2}=12\)

\(\Rightarrow\left|3x\right|=12\)

\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{3}\\x=-\dfrac{12}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

17 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>=-1\end{matrix}\right.\)

=>\(x>=\dfrac{3}{2}\)

\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)

=>\(\dfrac{2x-3-x-1}{\sqrt{2x-3}+\sqrt{x+1}}-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x+1}}-1\right)=0\)

=>x-4=0

=>x=4(nhận)

NV
6 tháng 3 2023

1.

a. Em tự giải

b.

\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)

Để \(x+y=7\Rightarrow m+1+2m-3=7\)

\(\Rightarrow3m=9\Rightarrow m=3\)

NV
6 tháng 3 2023

2.

a. Em tự giải

b.

Phương trình có 2 nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

Ta có:

\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)

\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)

\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)

Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)

\(\Rightarrow P\ge40\)

Vậy \(P_{min}=40\) khi \(m=-3\)

(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

24 tháng 4 2017

Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9