K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác OCDB có 

\(\widehat{OBD}+\widehat{OBC}=180^0\)

Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

20 tháng 8 2015

Ngọc Vĩ tui chưa học hình

21 tháng 8 2015

Goi F la giao diem BH va AC

ta co : goc IAC+goc ACI=90 ( tam giac AIC vuong tai I)

          goc FBC+goc ACI=90 ( tam giac BFC vuong tai F)

--> goc IAC=gocFBC

ma goc IAC=goc CBM ( 2goc nt cung chan cung MC cua (O))

nen FBC=CBM--> BI la tia p.g goc HBM

xet tam giac BHM ta co

BI la duong p.g va BI la duong cao ( AI vuong goc BC tai I)

--> tam giac BHM can tai B 

ma BI la duong cao

nen BI la duong trung tuyen

-> I la trung diem HM

-> HI=IM

CAch nay dung k co Loan?

20 tháng 8 2015

A B C H I M O D

Kẻ đường kính AD

*) Chứng minh BHCD là hbh ; từ đó suy ra BH = CD

+) Vì tam giác ABD nội tiếp đường tròn (O) đường kính AD => tam giác ABD vuông tại B => DB vuông góc với AB 

Mà CH vuông góc với AB => CH // BD

+) Tương tự ta có AC vuông góc với DC mà BH vuông góc với AC => DC// BH

=> tứ giác BHCD là hbh => BH = CD   (1)

*) Tam giác AIB vuông tại I => góc BAM + IBA = 90o

Mặt khác, tam giác ABD vuông tại B => góc  ABD = IBA + CBD = 90o

=> góc BAM = CBD 

Hơn nữa; góc BAM là góc nội tiếp (O) chắn cung BM; góc CBD là góc nt (O) chắn cung CD

=> dây BM = dây CD  (2)

Từ (1)(2) => BH = BM => tam giác BHM cân tại B có BI là đuơng cao nên đông thời là đường trung tuyến => I là trung điểm của HM 

=> IH = IM

 

4 tháng 2 2019

A B C I O K M N J H E F D x

Gọi E là điểm đối xứng với A qua đường thẳng OI. Tia AI cắt (O) tại D khác A. DE giao BC tại F.

Ta thấy \(\Delta\)MIN và \(\Delta\)AIE cân tại I có ^IMN = ^IAE (Vì MN // AE vuông góc OI) => ^MIN = ^AIE => I,N,E thẳng hàng.

=> MN là đường trung bình \(\Delta\)AIE => AE = 2.MN, IE = 2.IN 

Ta có: AE // IK (Cùng vuông góc OI) => ^KIE = ^IEA = ^IAE = ^BAE - ^BAD = ^BDx - ^DBC = ^BFD = ^KFE

=> Tứ giác KEIF nội tiếp => ^KEI = ^BFI     (1)

Mặt khác: \(\Delta\)DFC ~ \(\Delta\)DCE (g.g) => DC2 = DF.DE => DI2 = DF.DE => \(\Delta\)DFI ~ \(\Delta\)DIE (c.g.c)

=> ^DFI = ^DIE = 2.^IAE = 2.^BFD (Vì ^IAE = ^BFD)  => ^KIE = ^BFI  (2)

Từ (1) và (2) => ^KIE = ^KEI => \(\Delta\)IKE cân tại K. Từ đó: \(\Delta\)IKE ~ \(\Delta\)AIE (g.g) => IE2 = IK.AE

Dễ thấy MJ là đường trung bình \(\Delta\)AIK => IK = 2.MJ. Kết hợp với AE = 2.MN (cmt)

Suy ra: IE2 = 4.MJ.MN hay AI2 = 4.MJ.MN => 4.MA2 = 4.MJ.MN => MA2 = MJ.MN => \(\Delta\)MJA ~ \(\Delta\)MAN (c.g.c)

=> ^MJA = ^MAN. Tương tự thì ^MJI = ^MIN => ^MJA + ^MJI = ^MAN + ^MIN => ^AJI = 1800 - ^ANI

Lại có: H là trực tâm \(\Delta\)AIN => ^AHI = 1800 - ^ANI. Do đó: ^AHI = ^AJI => Tứ giác AIHJ nội tiếp

=> ^AJH + ^AIH = 1800 <=> ^MJA + ^MJH + 900 - ^IAN = ^MJH + 900 = 1800 => ^MJH = 900 

=> JH vuông góc MN. Mà OI cũng vuông góc MN nên JH // OI (đpcm).