Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)
Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.
Khi q=3k+2 thì p=3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ
Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn
Vậy số dư khi chia p+q cho 12 =0
p;q là các số nguyên tố >3 =>q=3k+1;3k+2
xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3 (trái giả thuyết)
=>q=3k+2=>p=3k+2+2=3k+4
=>p+q=3k+2+3k+4=6k+6=6(k+1)
q= 3k+2 không chia hết cho 2
=>3k không chia hết cho 2
=>k không chia hết cho 2
=>k+1 chia hết cho 2=>k+1=2a
=>p+q=6(k+1)=6.2a=12a chia hết cho 12
vậy p+q chia hết cho 12
ví dụ là đúng nhất:
thử lấy p=5 xem, nếu thế thì p=7(vẫn là số nguyên tố);(5+7):12=1(dư 0)
p=13 thì p=15;(13+15):12=2(dư 4)
Chắc thế,hi hi
Vì q có là số nguyên tố nên q có dạng 3k + 1 hoặc 3k + 2 ( k \(\in\) N )
Nếu q = 3k + 1 thì q = 3k + 3 nên p \(\vdots\) 3 . Loại vì p là số nguyên tố > 3
Khi q = 3k + 2 thì p = 3k + 4
Vì q là số nguyên tố > 3 nên k lẻ
Ta có:
p + q = 6(k + 1),chia hết cho 12 vì k + 1 chẵn
Vậy số dư khi p + q cho 12 là 0
Gọi b là số tự nhiên đó.
Vì b chia cho 7 dư 5,chia cho 13 dư 4
=>b+9 chia hết cho 7
b+9 chia hết cho 13
=>b+9 chia hết cho 7.13=91
=>b chi cho 91 dư 91-9=82
=>điều phải chứng minh
Chứng minh : p+q chia hết cho 4. Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p, q sẽ có dạng 4k+1 và 4k+3. -> p+q chia hêt cho 4.
Vì p,q là số nguyên tố > 3 nên p,q chỉ có thể chia 3 dư 1 hoặc 2. p=3k+1 -> q=3k+3 chia hết cho 3 loại; p=3k+2 -> q= 3k+1 Nên p+q chia hết cho 3.
---> p+q chia hết cho 12
P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8
( vì k(k+1) chia hết cho 2 với mọi k thuộc n)
P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2
. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N
. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N
(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24
cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24
các bạn giải hộ mình vs
n>3=>n không chia hết cho 3
=>n2 không chia hết cho 3
=>n2=3q+1(tính chất của số chính phương)
=>n2+2012=3q+1+2012=3q+2013=3(q+671) chia hết cho 3
=>n2+2012 là hợp số
b) n chia cho 17 dư 13 => n - 13 chia hết cho 17
n chia cho 37 dư 23 => n - 23 chia hết cho 23
=> 2n - 26 chia hết cho 17 => 2n - 26 + 17 = 2n - 9 chia hết cho 17
2n - 46 chia hết cho 37 => 2n - 46 + 37 = 2n - 9 chia hết cho 37
=> 2n - 9 chia hết cho 17 và 37. 17 và 37 nguyên tố cùng nhau nên
2n - 9 chia hết cho 17.37 = 629
=> 2n - 9 + 629 chia hết cho 629
Hay 2n + 620 chia hết cho 629
mà 2n + 620 = 2.(n + 310) nên 2.(n + 310) chia hết cho 629 . vì 2 và 629 nguyên tố cùng nhau nên n + 310 chia hết cho 629
=> n chia cho 629 dư 319 (629 - 310 = 319)
Do A = x183y chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = x183y
Vì A = x183y chia cho 9 dư 1
→ x183y - 1 chia hết cho 9
→ x183y chia hết cho 9
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
a)
= 48 + 288 : ( x - 3 )2 = 50
288 : ( x - 3 )2 = 50 - 48
288: ( x - 3 )2= 2
(x - 3 )2= 288 : 2
(x - 3)2= 144
(x - 3)2 = 122
x - 3 = 12
x = 12 + 3 = 15
Vì p, q là số nguyên tố lớn hơn 3 và p = q + 2 nên q không thể chia 3 dư 1, p không thể chia 3 dư 2. Do đó p chia 3 dư 1 và q chia 3 dư 2, suy ra (p + q) chia hết cho 3.
Hơn nữa, q đều phải là số lẻ, nên p, q hoặc chia 4 dư 1, hoặc chia 4 dư 3.
Nếu cả p, q đều chia 4 dư 1 thì đặt p = 4m + 1, q = 4n + 1, với m,n là các số tự nhiên khác 0. Khi đó từ p = q + 2, ta có:
4m + 1 = 4n + 3
Điều này tương đương với 2 = 4m - 4n = 4(m - n), suy ra 2 chia hết cho 4, vô lý.
Nếu cả p, q đều chia 4 dư 3 thì đặt p = 4k + 1, q = 4l + 1, với k, l là các số tự nhiên khác 0. Khi đó từ p = q + 2, ta có:
4k + 3 = 4l + 5
Điều này tương đương với 2 = 4k - 4l = 4(k - l), tức là 2 chia hết cho 4, vô lý.
Vậy trong 2 số nguyên tố p, q phải có 1 số chia 4 dư 1 và số còn lại chia 4 dư 3, suy ra (p + q) chia hết cho 4.
Ta có (p + q) vừa chia hết cho 3, vừa chia hết cho 4, hơn nữa ƯCLN(p, q) = 1 nên (p + q) chia hết cho 12. Vậy (p + q) chia 12 dư 0.