Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ
a) Xét \(\Delta ABM\) và \(\Delta DCM\)có :
AM=DM ( gt )
BM=MC ( gt )
\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )
do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )
b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
nên AB // BC
Mình đã đăng lại câu hỏi dễ hiểu hơn theo link này rồi ạ: https://olm.vn/hoi-dap/detail/1306671964747.html?auto=1
a) Xét tam giác vuông ABC, áp dụng định lí Pi-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Ta có do tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^o\)
Lại có \(\widehat{IBC}=\frac{\widehat{ABC}}{2};\widehat{ICB}=\frac{\widehat{ACB}}{2}\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)
Xét tam giác BIC có \(\widehat{IBC}+\widehat{ICB}=45^o\) nên \(\widehat{BIC}=180^o-45^o=135^o\)
c) Kẻ DH vuông góc BC tại H.
Ta có ngay \(\Delta BAD=\Delta BHD\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AD=HD\)
Lại có : theo quan hệ giữa đường vuông góc với đường xiên thì HD < DC
Suy ra AD < DC
d) Gọi K là chân đường vuông góc hạ từ I xuống BC.
Ta có I là giao điểm của ba đường phân giác nên IE = IF = IK
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=24\left(cm^2\right)\)
Lại có \(S_{ABC}=S_{ABI}+S_{BCI}+S_{CIA}=\frac{1}{2}AB.EI+\frac{1}{2}AC.IF+\frac{1}{2}BC.IK\)
\(=\frac{1}{2}\left(AB+BC+CA\right).EI=12.EI\)
Vậy nên \(12.EI=24\Rightarrow EI=2\left(cm\right)\)
Ta thấy AEIF là hình vuông nên AE = AF = 2cm.
B D C A H K E 1 2
a) Xét \(\Delta BED\)và \(\Delta BEC\)có:
BC=BD (giả thiết)
\(\widehat{B_1}=\widehat{B_2}\)( BE là phân giác góc B trong tam giác ABC)
BE chung
=> \(\Delta BED\)=\(\Delta BEC\)(c.g.c)
b) Vì \(\Delta BED\)=\(\Delta BEC\)( theo câu a)
=> DE=EC ( cạnh tương ứng bằng nhau) (1)
mà ta lại có: DK=KC ( K là trung điểm DC) (2)
và EK chung (3)
Từ (1) (2) (3) => \(\Delta EDK=\Delta ECK\)(c.c.c)
=>\(\widehat{DKE}=\widehat{CKE}\) ( góc tương ứng)
mà \(\widehat{DKE}+\widehat{CKE}=180^o\)
=> \(\widehat{DKE}=\widehat{CKE}=90^o\)hay \(EK\perp DC\)
c) Tương tự như trên ta chứng minh được \(\Delta DBK=\Delta CBK\)( c.c.c)
=> \(\widehat{DBK}=\widehat{CBK}\)
=> K thuộc tia phân giác góc B
=> B,E<, K thẳng hàng
d) Theo đề bài ta có: \(AH\perp DC\)và \(BK\perp DC\)
=> AH//BK
=> \(\widehat{DBK}=\widehat{DAH}\)
Để góc DAH=45 độ
=> \(\widehat{CBD}=2.\widehat{DBK}=2.\widehat{DAH}=2.45^o=90^o\)
Hay tam giác ABC vuông tại B
Xác định các góc trong tam giác ABD và tam giác DBC. Ta có góc xAD = 134° và góc yDA = 56°. Tính góc ADB. Ta có: Góc ADB = 180° - (góc xAD + góc yDA) = 180° - (134° + 56°) = 180° - 190° = -10° (không hợp lệ) Do AB = DC, ta có thể suy ra rằng tam giác ABD và tam giác DBC là đồng dạng. Nếu I là trung điểm của BD và DC, thì ta có BI = ID và CI = ID. Do đó, I là trung điểm của BD và DC.