K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1

Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì  nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

21 tháng 1

Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng giạng với tam giác đã cho

- Có 

- Các trường hợp là :

đồng dạng (c.c.c) , đồng dạng (g.g) , đông dạng (c.g.c)

 
similar1.png

Tam giác đồng dạng có hai tính chất quan trọng sau đây:
 
 
Ba cặp góc bằng nhau
A=∠A,   ∠B=∠B,   ∠C=∠C


Ba cặp cạnh tỉ lệ với nhau
ABAB=BCBC=CACA

đồng dạng (c.c.c) , đồng dạng (g.g) , đồng dạng (c.g.c)

 
similar1.png

Tam giác đồng dạng có hai tính chất quan trọng sau đây:
 
 
Ba cặp góc bằng nhau
A=∠A,   ∠B=∠B,   ∠C=∠C


Ba cặp cạnh tỉ lệ với nhau
ABAB=BCBC=CACA



Vậy làm thế nào để chứng minh hai tam giác là đồng dạng với nhau. Thông thường chúng ta có ba cách sau đây.

Trường hợp Góc - Góc: hai tam giác có hai cặp góc bằng nhau là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra được
A=∠A  và   ∠B=∠B
thì chúng ta có thể kết luận rằng hai tam giác ABC và  ABC là đồng dạng với nhau.
 
similar2.png



Trường hợp Cạnh - Cạnh - Cạnh: hai tam giác có ba cặp cạnh tỉ lệ với nhau là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra được
ABAB=BCBC=CACA

thì chúng ta có thể kết luận rằng hai tam giác ABC và  ABC là đồng dạng với nhau.
 
similar3.png





Trường hợp Cạnh - Góc - Cạnh: hai tam giác có hai cặp cạnh tỉ lệ với nhau và cặp góc xen giữa hai cặp cạnh này bằng nhau thì đó là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra được
ABABBCBC   và   ∠B=∠B
thì chúng ta có thể kết luận rằng hai tam giác ABC và  ABC là đồng dạng với nhau.
 
similar4.png



Nếu hai tam giác là hai tam giác vuông thì việc chứng minh hai tam giác là đồng dạng còn đơn giản hơn nữa. Chúng ta có các cách sau đây.


Trường hợp Góc Nhọn: hai tam giác vuông có một cặp góc nhọn bằng nhau là hai tam giác đồng dạng với nhau

Ở hình dưới đây, nếu chúng ta chỉ ra được
A=∠A
thì chúng ta có thể kết luận rằng hai tam giác vuông ABC và  ABC là đồng dạng với nhau.
 
similar5.png


Trường hợp Cạnh - Cạnh: hai tam giác vuông có hai cặp cạnh tỉ lệ với nhau là hai tam giác đồng dạng với nhau

Ở hình trên đây, nếu chúng ta chỉ ra được
ABABBCBC,   hoc   BCBCCACA,   hoc   CACAABAB
thì chúng ta có thể kết luận rằng hai tam giác vuông ABC và  ABC là đồng dạng với nhau.
14 tháng 5 2017

a) - Xét hai tam giác vuông AHC và DFC có:

Góc C chung 

Suy ra: tam giác AHC đồng dạng với tam giác DFC

b) - Xét hai tam giác vuông AHB và DEB có:

Góc B chung 

suy ra: tam giác AHB đồng dạng với tam giác DEB 

suy ra: AH/DE = AB/DB suy ra: AH.DB=DE.AB (đfcm)

c) xét hai tam giác DEF và ACB có :

góc E = góc C (= góc EDB)

góc F = góc B (= góc FDC)

suy ra : tam giác DEF = tam giác ACB (g.g)

suy ra: DE/DF = AC/AB

4 tháng 5 2019

Bạn tự vẽ hình nhé :^ 

a) Xét tam giác ABD và tam giác ACE có :

góc ADB = góc ACE ( vì cùng bằng 90 độ )

góc BAC chung 

=> tam giác ABD đồng dạng với tam giác ACE ( g.g)

b) Vì tam giác ABD đồng dạng với tam giác ACE (cmt)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\)( định nghĩa tam giác đồng dạng)

Xét tam giác ADE và tam giác ABC có

\(\frac{AD}{AE}=\frac{AB}{AC}\)(cmt)

\(\widehat{BAC}\)chung  

\(\Rightarrow\) tam giác ADE đồng dạng với  tam giác ABC ( c.g.c)

Còn câu c là gì vậy ạ ?

4 tháng 2 2017

Cho a',b',c' là số đo cạnh của tam giác A'B'C'
       a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là:  \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)

19 tháng 4 2020

A B C A' B' C'

a, Gọi CV tam giác A'B'C' là P', ABC là P

\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)

\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)

Áp dụng t/c DTSBN , ta có  :

\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)

Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)

3 tháng 3 2018

kết bạn mình nghe