

Tam giác đồng dạng có hai tính chất quan trọng sau đây:
Ba cặp cạnh tỉ lệ với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Có
- Các trường hợp là :
đồng dạng (c.c.c) , đồng dạng (g.g) , đông dạng (c.g.c)
đồng dạng (c.c.c) , đồng dạng (g.g) , đồng dạng (c.g.c)
a) - Xét hai tam giác vuông AHC và DFC có:
Góc C chung
Suy ra: tam giác AHC đồng dạng với tam giác DFC
b) - Xét hai tam giác vuông AHB và DEB có:
Góc B chung
suy ra: tam giác AHB đồng dạng với tam giác DEB
suy ra: AH/DE = AB/DB suy ra: AH.DB=DE.AB (đfcm)
c) xét hai tam giác DEF và ACB có :
góc E = góc C (= góc EDB)
góc F = góc B (= góc FDC)
suy ra : tam giác DEF = tam giác ACB (g.g)
suy ra: DE/DF = AC/AB
Bạn tự vẽ hình nhé :^
a) Xét tam giác ABD và tam giác ACE có :
góc ADB = góc ACE ( vì cùng bằng 90 độ )
góc BAC chung
=> tam giác ABD đồng dạng với tam giác ACE ( g.g)
b) Vì tam giác ABD đồng dạng với tam giác ACE (cmt)
=> \(\frac{AB}{AC}=\frac{AD}{AE}\)( định nghĩa tam giác đồng dạng)
Xét tam giác ADE và tam giác ABC có
\(\frac{AD}{AE}=\frac{AB}{AC}\)(cmt)
\(\widehat{BAC}\)chung
\(\Rightarrow\) tam giác ADE đồng dạng với tam giác ABC ( c.g.c)
Còn câu c là gì vậy ạ ?
Cho a',b',c' là số đo cạnh của tam giác A'B'C'
a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là: \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)
A B C A' B' C'
a, Gọi CV tam giác A'B'C' là P', ABC là P
\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)
Áp dụng t/c DTSBN , ta có :
\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)
Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)
Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.
Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới đồng giạng với tam giác đã cho