
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: a= a
a5=a.a.a.a.a
=> a và a5 có chữ số tận cùng là a
=> đpcm

a5 - a = a.(a4 - 1) = a.(a2 - 1).(a2 + 1) = a.(a - 1).(a + 1).(a2 + 1) (*)
Dễ thấy a.(a - 1).(a + 1) chia hết cho 2 và 3 vì là tích 3 số nguyên liên tiếp
=> a5 - a chia hết cho 2 và 3
Mà (2;3)=1 => a5 - a chia hết cho 6 (1)
Ta đã biết số chính phương a2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4
+ Nếu a2 chia 5 dư 0, do 5 nguyên tố nên a chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 1 => a2 - 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 4 => a2 + 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
Như vậy, a5 - a luôn chia hết cho 5 với mọi a ϵ Z (2)
Từ (1) và (2), do (5;6)=1 => a5 - a chia hết cho 30 (')
=> a5 - a có tận cùng là 0 hay a5 và a có chữ số tận cùng giống nhau (")
(') và (") chính là đpcm

Gọi m là độ dài một cạnh của hình vuông đó
aabb là diện tích của hình vuông đó(\(1000\le\overline{aabb}\le9999\))
ta có aabb = m2
=> 1100a + 11b = m2
=> 11(100a + b) = m2
suy ra \(m^2⋮11\Rightarrow m⋮11\left(tcm\right)\)
ta có aabb = m2
và \(1000\le\overline{aabb}\le9999\)
nên \(32\le m\le99\)
thử lần lượt với 33;44;55;66;77;88;99
ta có 88 thỏa mãn
vậy m = 88

a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+4\right)-12=0\)
Đặt \(x^2+x=t\),ta có :
\(t\left(t+4\right)-12=0\)
\(\Leftrightarrow t^2+4t-12=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-6=0\\t-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-6=0\\x^2+x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)\left(x+3\right)=0\\\left(x-1\right)\left(x+2\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{2;-3\right\}\\x\in\left\{1;-2\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-3;1;-2\right\}\)

Giả sử \(\overline{abcd}>\overline{efgh}\). Khi đó \(a>e\) nên suy ra \(b>f,c>g,d>h\).
Gọi \(x^2=\overline{abcd},y^2=\overline{efgh}\) thì \(x^2-y^2=\overline{nnnn}\) (số có 4 chữ số giống nhau).
Ở đây cần chặn \(32\le x,y\le99\)
Trường hợp 1: \(x^2-y^2=1111=11.101\)
Giải được \(x=56,y=45\). Suy ra \(\overline{abcd}=3136,\overline{efgh}=2025\) (nhận được).
Các trường hợp còn lại giải tương tự.

Ta có :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\)
\(\Rightarrow a^2c+ab^2+bc^2\)
\(=b^2c+a^2b+ac^2\)
\(\Rightarrow a^2\left(c-b\right)-a\left(c^2-b^2\right)+bc\left(c-b\right)=0\)
\(\Rightarrow\left(c-b\right)\left(a^2-ac-ab+bc\right)=0\)
\(\Rightarrow\left(c-b\right)\left(a-b\right)\left(a-c\right)=0\)
Theo phân tích trên ta được tồn tại các thừa số \(\hept{\begin{cases}c-b\\a-c\\a-b\end{cases}}=0\)
Vậy trong ba số a , b , c tồn tại 2 số giống nhau ( đpcm)
y=0 ??? chịu đề bài luôn