Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I
bn **** rồi mik làm mik ko nuốt lời đâu
a) Xét tam giác ABM và tam giác ACM
AB=AC(tam giác ABC cân)
góc B=góc C( tam giác ABC cân)
BM=CM(M là trung điểm của BC)
=>tam giác ABM=tam giác ACM(c.g.c)
bn **** mik làm nốt câu b và c
Thực hiện phép tính A =
\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+.....+2016}\right)\)
\(\)
A B C K P H I M
c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK
vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)
nên => góc PMC = góc KMC(đồng vị)
vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)
nên tam giác BIM cân tại I
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét \(\Delta AMB\) và \(\Delta MAC\)CÓ
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung
Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I
a) Vì tam giác ABC cân tại A =>AB=AC và góc ABC=góc ACB hay góc HBM= góc KCM
Vì M là trung điểm của BC =>BM=MC
Xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
Chung cạnh AM
Do đó tam giac ABM = tam giác ACM (c.c.c)
b) Vì MH vuông góc với AB =>góc BHM=90
MK vuông góc với AC =>góc MKC=90
Do đó góc BHM = góc MKC =90
Xét tam giac BHM và tam giác CKM có
góc BHM= góc CKM=90
BM=CM
góc HBM= góc KCM
Do đó tam giac BHM = tam giac CKM (cạnh huyền-góc nhọn)
=>BH=CK (hai cạnh tương ứng)
c)Vì BP vuông góc với AC,MK vuông góc với AC
=>BP song song với MK
=>góc PBM= góc KMC ( hai góc đồng vị)
Vì tam giác BHM = tam giác CKM => góc BMH = góc CMK
Do đó góc PBM = góc HMB hay góc IBM = góc IMB
Trong tam giác BIM có góc IBM = góc IMB => tam giác BIM cân
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN
Tiếp nè bn :))
c) Vì AH là trung tuyến của tam giác cân ABC
=>AH là phân giác góc BAC(t/c tam giác cân)
=> góc BAH=góc CAH(đ/lí )
Xét tam giác ABG và tam giác ACG có:
AB=AC(gt)
AG chung
góc BAG=góc CAG(G thuộc AH)
=>tam giác BAG=tam giác CAG(c.g.c)
=>Góc BAG= góc CAG (2 góc t/ứng)
Bài này bn tìm kiếm trên mạng là có nhé !
Bn có thể tham khảo ở H
Đã có đầy đủ lời giải rồi
Các chữ viết tắt:
t/c: tính chất
cmt: chứng minh trên
cm: chứng minh
gt: giả thiết
t/ứ: tương ứng
còn thắc mắc thì hỏi nhé! VOTE TỐT HỘ MÌNH Ạ
BL a) Vì △ABC cân tại A (gt) => AB = AC (t/c) Xét △ABM và △ACM có: AB=AC (cmt) BÂM = CÂM (AM là tia phân giác) AM chung => △ABM = △ACM (c.g.c)
b) Vì tam giác ABC cân tại A (gt) mà AM là tia phân giác góc A (gt) => tia phân giác AM đồng thời là đường cao ứng với canh BC (t/c) =>AM ⊥ BC (t/c)
c) Cách 1 RECOMMEND cách này nha: xét △AHM và △AKM CÓ: AHM = AKM = 90 độ AM chung BÂM = CÂM (cm:a) hay HÂM = KÂM =>ΔΑΗΜ = ΔΑΚΜ (g.c. g) => AH = AK (cạnh t/ứ) Ta có: AB = AH + BH AC = AK + CK mà AB = AC(cm : a) AH=AK(cmt) =>BH =CK(ĐPCM) Cách 2: DÙNG CÁCH NÀY CÂU d, SẼ NGẮN HƠN Vì △ABC cân tại A (gt) mà AM là tia phân giác góc A (gt) → tia phân giác AM đồng thời là đường trung tuyến (t/c) → M là trung điểm của BC (t/c) => BM =MC (t/c) d) Ta có: BP⊥AC (gt) MK⊥AF (gt) => BP//MK (⊥AC) =>CMK = CBP (góc đồng vị) hay CMK = MBI ① LƯU Ý 1: Nếu câu c) chọn cách 2 thì làm luôn như dưới đây:
Lại có:△BHM=△CKM (cm:c)=) HMB = CMK (góc t/ứ) hay IMB =CMK② TỪ ①, ② => IMB = MBI (= CMK) =>△IBM cân tại I (t/c) LƯU 2: Nếu câu c, chọn cách 1 thì làm như dưới đây: Xét △BHM và △CKM CÓ: BH=CK (cm:c) BHM = CKM (=90°) HM = MK (△AHM = ΔΑΚM) =>△BHM = △CKM (c.g.c) Rồi làm như LƯU Ý 1) DONE!!! VOTE TỐT Ạ!!!