K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1

Olm chào em, em cần làm gì với biểu thức này?

10 tháng 1

6x^2 -3x +9 = 36x -3x +9. = 33x+9= 42x

27 tháng 11 2019

a/ ĐKXĐ:...

Đặt \(\sqrt{x^2-6x+6}=t\Rightarrow t^2=x^2-6x+6\Leftrightarrow t^2+3=x^2-6x+9\)

\(\Rightarrow t^2+3=4t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-6x+6=9\\x^2-6x+6=1\end{matrix}\right.\)

Bạn tự giải nốt và đối chiếu ĐKXĐ

27 tháng 11 2019

Mouse's Highen's Bạn xem lại hộ mk đề bài câu b đi. Thấy đáng lẽ phải như thế này:

\(\sqrt{2x+3}+\sqrt{x+1}=3x+4\)

28 tháng 11 2021

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)

BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)

\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)

\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)

\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)

\(\Leftrightarrow x(x+1)\leq 0\)

\(\Leftrightarrow -1\leq x\leq 0\)

Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)

12 tháng 3 2019

Trình bày đẹp :v công thức ko bung biêng

20 tháng 11 2018

a. bình hai vế :

3x^2-9x+1=(x-2)^2

3x^2-9x+1=x^2-4x+4

2x^2-5x-3=0

\(\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

thử lại nghiệm rồi nhận hoặc loại

b.\(\sqrt{x^2+4}\)=\(\dfrac{x^2-9}{x-3}\)=x+3

bình 2 vế

x^2+4 =(x+3)^2

x^2+4-x^2-6x-9=0

x=5/6

c.đặt \(\sqrt{x^2-6x+6}\)=a, a\(\ge\)0

a^2+3=4a

\(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

a=3=>\(\sqrt{x^2-6x+6}\)=3=>x^2-6x+6=9=>\(\left[{}\begin{matrix}x=3+2\sqrt{3}\\x=3-2\sqrt{3}\end{matrix}\right.\)

a=1=>\(\sqrt{x^2-6x+6}\)=1=>x^2-6x+6=1=>

\(\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

thử lại các nghiệm rồi nhận hoặc loại

21 tháng 11 2018

À bạn ơi câu b phải đặt nhân tử chung ra nha hôm qua mình làm thiếu 1 nghiệm x=3 nha xl bn nhìu