Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mìh đi đã rồi mìh giải cho, chắc chắn đúng đó. ko gạt bn đâu
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
\(2x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{3}.\dfrac{1}{5}=\dfrac{y}{2}.\dfrac{1}{5}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\left(1\right)\)
\(3y=5z\)
\(\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{5}.\dfrac{1}{2}=\dfrac{z}{3}.\dfrac{1}{2}\Rightarrow\dfrac{y}{10}=\dfrac{z}{6}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Vì \(\left|x-2y\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)
* \(TH1:x-2y=5\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2y}{20}=\dfrac{x-2y}{15-20}=\dfrac{5}{-5}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=-1\\\dfrac{y}{10}=-1\\\dfrac{z}{6}=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1.15=-15\\y=-1.10=-10\\z=-1.6=-6\end{matrix}\right.\)
\(TH2:\left|x-2y\right|=-5\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{2y}{20}=\dfrac{x-2y}{15-20}=\dfrac{-5}{-5}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=1\\\dfrac{y}{10}=1\\\dfrac{z}{6}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.15=15\\y=1.10=10\\z=1.6=6\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.;\left\{{}\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)
a) 2x = 3y =7z và x+y-z =58
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)
\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)
\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)
a) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)
Có: x.y=84
\(\Rightarrow3k\cdot7k=84\)
\(\Rightarrow k^2=4\Rightarrow\left[\begin{array}{nghiempt}k=2\\k=-2\end{array}\right.\)
Với k=2 thì x=6 ;y=14
Với k=-2 thì x=-6 ;y =-14
b) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{5y-2x}{5\cdot7-2\cdot3}=\frac{-4}{29}\)
=> \(\begin{cases}x=-\frac{12}{29}\\y=-\frac{28}{29}\end{cases}\)
c) \(2x=3y=5z\)
\(\Leftrightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta co:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}\)
thiếu đề
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}=\frac{10}{17}\)
=>\(\begin{cases}x=\frac{150}{17}\\y=\frac{100}{17}\\z=\frac{60}{17}\end{cases}\)
@VỘI VÀNG QUÁ
2x=3y=5z
Chia mỗi vế cho 30=2*3*5 ta có:
x/15=y/10=z/6
Mà y/10=2y/20, z/6=3z/18
=>x/15=2y/20=3z/18
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/15=2y/20=3z/18=x-2y+3z/15-20+18=65/13=5
=>x=5*15=75, y=5*10=50, z=5*6=30.