Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{b}< c\Rightarrow ad< bc\)
\(ad< bc\Rightarrow\frac{ad}{b}< c\Rightarrow\frac{a}{b}< \frac{c}{d}\)
a) Vì b>0,d>0 nên khi nhân 2 vế của 1 BĐT cho b hoặc d thì dấu của BĐT không đổi
Có\(\frac{a}{b}< \frac{c}{d}\)nhân 2 vế BĐT cho b.d>0\(\Rightarrow\frac{a.b.d}{b}< \frac{c.b.d}{d}\Leftrightarrow ad< bc\)
b) Tương tự câu a ta chia 2 vế BĐT cho b.d
\(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a/b = 1 => a = b
b/c = 1 => b = c
c/d = 1 => c = d
d/a = 1 => d = a
=> a = b = c = d
=> \(Q=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

2. ....( đầu bài)
ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=>\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
AD t/ c dãy tỉ số bằng nhau ta có:
.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a+\left(b-b\right)}{2c+\left(d-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
. \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\)(đpcm)

a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)
\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh
b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm
B. ab = cd
Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d=b.c\)
\(\Rightarrow A\)