Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x = 43 : 25
2x = (22)3 : 25
2x = 26 : 25
2x = 2
=> x = 1
a, \(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b, \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=21:7\)
\(\Rightarrow x=3\)
c, \(x^{10}=1^x\)
\(\Rightarrow x\in\left\{1;0\right\}\)
\(2^x-15=17\)
\(\Rightarrow2^x=17+15\)
\(\Rightarrow2^x=32=2^4\)
\(\Rightarrow x=4\)
\(\left(7x-11\right)^3=2^5.5^2+200\)
Phần này mk ko bt làm đâu
\(x^{10}=1^x\)
\(\Rightarrow\)\(x^{10}=1\)
\(\Rightarrow x=1\)
\(\left(\frac{1}{3}\right)^{2x-1}-\frac{1}{3^2}=-\frac{2}{27}\)
=> \(\left(\frac{1}{3}\right)^{2x-1}=-\frac{2}{27}+\frac{1}{9}\)
=> \(\left(\frac{1}{3}\right)^{2x-1}=\frac{1}{27}\)
=> \(\left(\frac{1}{3}\right)^{2x-1}=\left(\frac{1}{3}\right)^3\)
=> 2x - 1 = 3
=> 2x = 3 + 1
=> 2x = 4
=> x = 4/2 = 2
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Ta thấy \(8^{2187}>3^{512}\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
\(2^{3^{2^3}}=2^{3^8}=2^{6561}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Tới đây mk chịu để mk suy nghĩ đã!
A = 1 + 4 + 42 + ... + 499
4A = 4 + 42 + ... + 4100
4A - A = 4100 - 1
3A = 4100 - 1
=> 4100 - 1 + 1 = 4x
=> 4100 = 4x
=> x = 100
BÀI 1 dễ òi nên k giải nữa nha, chỉ cần ghép các số ( 1;2;3 ) số đầu, liên tiếp dần là đc nha bạn.
Bài 2:
\(8^4\cdot16^5=\left(2^3\right)^4\cdot\left(2^4\right)^5=2^{12}\cdot2^{20}=2^{32}\)
\(5^{40}\cdot125^7\cdot625^3=5^{40}\cdot\left(5^3\right)^7\cdot\left(5^4\right)^3=5^{40}\cdot5^{21}\cdot5^{12}=5^{73}\)
\(27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\)
\(10^3\cdot100^5\cdot1000^4=10^3\cdot\left(10^2\right)^5\cdot\left(10^3\right)^4=10^3\cdot10^{10}\cdot10^{12}=10^{25}\)
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)
\(\left(\left|x\right|-2^3\right)-7=5.3^2\)
\(\Leftrightarrow\left(\left|x\right|-2^3\right)-7=45\)
\(\Leftrightarrow\left|x\right|-2^3=45+7\)
\(\Leftrightarrow\left|x\right|-2^3=52\)
\(\Leftrightarrow\left|x\right|=52+2^3\)
\(\Leftrightarrow\left|x\right|=60\)
\(\orbr{\begin{cases}x=-60\\x=60\end{cases}}\)
vậy x=60 hoặc x=-60
chúc bn hok tốt
5\(x\) - \(2^3\) = \(3^3\)
5\(x\) - 8 = 27
5\(x\) = 27 + 8
5\(x\) = 35
\(x=35:5\)
\(x=7\)
Vậy \(x=7\)
Để giải phương trình 5�−23=335x−23=33, ta thực hiện các bước sau:
23=8vaˋ33=2723=8vaˋ33=27
5�−8=275x−8=27
5�=27+85x=27+85�=355x=35
�=355=7x=535=7
Vậy, �=7x=7.