Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\Delta ABO\sim\Delta A'B'O\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\left(1\right)\)
Và \(\Delta OIF\sim\Delta A'B'F\Rightarrow\dfrac{OF}{A'F}=\dfrac{OI}{A'B'}\left(2\right)\)
\(\Rightarrow\dfrac{OF}{OF-OA'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{12}{12-OA'}=\dfrac{6}{OA'}\Rightarrow OA'=4\left(cm\right)\)
Ta có: \(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow A'B'=\dfrac{AB.OA}{OA'}=\dfrac{36.6}{4}=54\left(cm\right)\)
Vật ảnh cao 4cm và cách thấu kính 54cm

Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)

Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{24}=\dfrac{1}{36}+\dfrac{1}{d'}\)
\(\Rightarrow d'=72cm\)

a) Vẽ ảnh theo đúng tỷ lệ
b) Trên hình vẽ, xét hai cặp tam giác đồng dạng:
ΔABO và ΔA’B’O; ΔA’B’F’ và ΔOIF’.
Từ hệ thức đồng dạng được:
Vì AB = OI (tứ giác BIOA là hình chữ nhật)
↔ dd' – df = d'f (1)
Chia cả hai vế của (1) cho tích d.d’.f ta được:
(đây được gọi là công thức thấu kính cho trường hợp ảnh thật)
Thay d = 16cm, f = 12cm ta tính được: OA’ = d’ = 48cm
Thay vào (*) ta được:
Ảnh cao gấp 3 lần vật.

Ta có:
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{15}{OA'}\left(1\right)\)
\(\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}=\dfrac{OF'}{OA'-OF'}=\dfrac{30}{OA'-30}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{15}{OA'}=\dfrac{30}{OA'-30}\)
\(\Leftrightarrow15\left(OA'-30\right)=30OA'\)
\(\Leftrightarrow15OA'-450=30OA'\)
\(\Leftrightarrow-450=30OA'-15OA'\)
\(\Leftrightarrow-450=15OA'\)
\(\Leftrightarrow OA'=\dfrac{-450}{15}=-30\left(cm\right)\)
Vậy khoảng cách từ ảnh đến thấu kính là: -30cm
Để giải bài toán này, chúng ta sẽ sử dụng công thức thấu kính hội tụ và các quy tắc về tỷ lệ chiều cao ảnh và chiều cao vật.
Bước 1: Tính khoảng cách từ ảnh đến thấu kính
Bước 2: Tính chiều cao ảnh
Kết luận
Tóm tắt đáp án
ta có \(\Delta\) OAB ~ \(\Delta\) OA'B' (g - g)
\(\frac{A^{\prime}B^{\prime}}{AB}=\frac{OA^{\prime}}{OA}\left(1\right)\)
\(\Delta\)FAB ~ \(\Delta\)FOI (g - g)
\(\Rightarrow\frac{A^{\prime}B^{\prime}}{AB}=\frac{OF}{OA-OF}\left(2\right)\)
Từ (1) và (2), ta có
\(\frac{OA^{\prime}}{OA}=\frac{OF}{OA-OF}\)
\(\Rightarrow\frac{1}{OA}+\frac{1}{OA^{\prime}}=\frac{1}{OF}\)
\(\lrArr\frac{1}{36}+\frac{1}{OA^{\prime}}=\frac{1}{12}\)
OA'= 18 cm
Từ (1), ta có
\(A^{\prime}B^{\prime}=\frac{OA^{\prime}}{OA}\times AB=\frac{18}{36}\times1=\frac12=0,5cm\)
Vậy khoảng cách từ ảnh đến thấu kính là 18 cm và chiều cao ảnh là 0,5 cm