K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính bán kính đường tròn ngoại tiếp tam giác ���ABC, chúng ta có thể sử dụng công thức sau:
�=���4�R=4SabcTrong đó:
Dữ liệu đã cho:
Bước 1: Tính diện tích tam giác �S
Ta sử dụng công thức diện tích tam giác khi biết hai cạnh và góc giữa chúng:
�=12×�×�×sin(�)S=21×a×b×sin(C)Ở đây:
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Tam giác ABC có AB = 5; AC =8 và . Tính bán kính r của đường tròn nội tiếp tam giác đã cho.
Cho tam giác ABC biết cạnh BC = 8 . Ac =10 . Ab =14 A, tính bán kính đường tròn ngoại tiếp tam giác ABC B, tính diện tích kim giác ABC
Ta sẽ tính `S_[\triangle ABC]` trước
`p = [ AB + AC + BC ] / 2 = [ 14 + 10 + 8 ] / 2 = 16`
`=> S_[\triangle ABC] = \sqrt{p ( p - AB ) ( p - AC ) ( p - BC ) } = 16\sqrt{6}`
Ta có: `S_[\triangle ABC] = [ AB . AC . BC ] / [ 4R]`
`=> R = [35\sqrt{6}] / 12`
Cho tam giác ABC có AB=3, AC=7, BC=8.
a) tính diện tích tam giác ABC.
b) Tính bán kính đường tròn nội tiếp, ngoại tiếp của tam giác.
c) Tính đường cao kẻ từ đỉnh A.
Tam giác ABC có AB = 3; AC = 6 và góc A = 600. Tính bán kính của đường tròn ngoại tiếp tam giác ABC.
Chọn B.
Áp dụng định lí Cosin, ta có
BC2 = AB2 + AC2 - 2AB.AC.cosA
= 32 + 62-2.3.6.cos600 = 27
Ta thấy: BC2 + AB2 = AC2
Suy ra tam giác ABC vuông tại B
do đó bán kính R = AC : 2 = 3.
Tam giác ABC có AB =3; AC = 6 và . Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Áp dụng định lí Cosin, ta có B C 2 = A B 2 + A C 2 − 2 A B . A C . cos B A C ^
= 3 2 + 6 2 − 2.3.6. c o s 60 0 = 27 ⇔ B C 2 = 27 ⇔ B C 2 + A B 2 = A C 2 .
Suy ra tam giác ABC vuông tại B, do đó bán kính R = A C 2 = 3.
Chọn A.
Cho tam giác ABC có AB = AC =2BC = a. Biết Rr =0,5 với R r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giác ABC . Tính a
em tham khảo:
Cho tam giác ABC, biết góc góc A bằng 600, AC = 8cm, AB = 5cm. Tính bán kính R đường tròn ngoại tiếp tam giác ABC.
Chọn B.
cho tam giác abc vuông tại b và góc bac=30 độ; bc=4 . tính bán kính đường tròn ngoại tiếp tam giác abc
Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Lời giải:
$p=\frac{AB+BC+AC}{2}=\frac{\sqrt{6}+\sqrt{3}+3}{2}$
Theo công thức Heron:
$S_{ABC}=\sqrt{p(p-AB)(p-BC)(p-AC)}=\frac{3+\sqrt{3}}{2}$
Bán kính đường tròn ngoại tiếp:
$R=\frac{AB.BC.AC}{4S}=\sqrt{2}$ (đvđd)
Bảng xếp hạng