Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $ƯC(a,b)\in Ư(36)=\left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 9; \pm 12; \pm 18; \pm 36\right\}$
b. $Ư(a,b)\in Ư(50)=\left\{\pm 1; \pm 2; \pm 5; \pm 10; \pm 25; \pm 50\right\}$
Suy ra ước có 2 chữ số của $a,b$ là:
$\left\{\pm 10; \pm 25; \pm 50\right\}$
Hướng dẫn cách làm :
Tìm hai số tự nhiên a, b biết : a+b = 189 và ước chung lớn nhất của chúng bằng 21.
=> Với n là số tự nhiên, chứng minh phân số .
Cho a,b là các số nguyên:
Chứng minh rằng nếu (3a+2b)⋮17 thì (10a+b)⋮17
=> Cách làm
Đặt: a < b.
Coi: a = 12k
b = 12h
(k; h thuộc N*; k < h)
Ta có:
a + b = 12k + 12h = 12.(k + h) = 96
=> k + h = 96 : 12 = 8
Ta có:
8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Vì: k < h nên (k; h) thuộc {(1, 7); (2, 6); (3, 5)}
=> (a; b) thuộc {(12, 84); (24, 72); (36, 60)}
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
n^2-n=NxN-N
Ta thấy rằng thì hai số có một chữ số(ý tớ là hàng đơn vị)thì số lớn nhất là 6
Vậy số tự nhiên lớn nhất là 996
UCLN :(a;b)=12
a=12.m
b=12.n
(m;n)=1
Có:a+b=12(m+n)=96
m+n =8
m=5;n=3
a=5.12 =60
b=3.12=36
Chúc bn hc tốt