Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)
\(\Rightarrow2023x+4090506=2024-2024-20232023\)
\(\Rightarrow x+4090506=-2023\)
\(\Rightarrow2023x=-2023-4090506\)
\(\Rightarrow2023x=-4092529\)
\(\Rightarrow x=-2023\).
Lời giải:
$\frac{x-2024}{4}=\frac{1}{x-2024}$ (điều kiện: $x\neq 2024$)
$\Rightarrow (x-2024)^2=4.1=4=2^2=(-2)^2$
$\Rightarrow x-2024=2$ hoặc $x-2024=-2$
$\Rightarrow x=2026$ hoặc $x=2022$
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
\(a,A=2024=2^3\times11\times23\\B=8^5\times 125^6=\left(2^3\right)^5\times\left(5^3\right)^6=2^{15}\times5^{18}\\ b,Ư\left(84\right)=\left\{1;2;3;4;6;7;12;14;21;28;42;84\right\}\\\Rightarrow x\in\left\{1;2;3;4;6;7;12;14;21;28;42;84\right\}\\ x\in B\left(21\right)=\left\{0;21;42;63;84;105;126;147;168;189;210;....\right\}\)
a) \(\left(x-2024\right)^{2023}=1\)
\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)
\(\Rightarrow x-2024=1\)
\(\Rightarrow x=2025\)
b) \(\left(2x-1\right)^5=32\)
\(\Rightarrow\left(2x-1\right)^5=2^5\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(5< 2^x< 100\)
\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)
\(\Rightarrow2< x< 7\)
a: A có 5 phần tử
b: B có (2024-0):2+1=1013(số)
c: C có (101-1):5+1=21(số)
d: D={0;1;2;3;4}
=>D có 5 phần tử
e: E={0;2;...;998}
E có (998-0):2+1=500(số)
x + (x + 1) + (x + 2) + ... + (x + 2024) + 2024 = 2024
x + x + 1 + x + 2 + ... + x + 2024 + 2024 = 2024
(x + x + x + ... + x) + (1 + 2 + 3 + ... + 2024) + 2024 = 2024
2025x + 2049300 + 2024 = 2024
2025x + 2051324 = 2024
2025 x = 2024 - 2051324 = 2049300
x = 2049300 : 2025
x = 1012
Vậy x = 1012