Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a, \(3\dfrac{3}{7}+2\dfrac{1}{2}\)
= \(\dfrac{24}{7}+\dfrac{5}{2}\)
= \(\dfrac{48+35}{14}=\dfrac{83}{14}=5\dfrac{13}{14}\)
b, \(12,5.\left(\dfrac{-5}{7}\right)+1,5.\left(\dfrac{-5}{7}\right)\)
= \(\left(\dfrac{-5}{7}\right).\left(12,5+1,5\right)\)
=\(\dfrac{-5}{7}.\dfrac{14}{1}=\dfrac{-5}{1}.\dfrac{2}{1}=\left(-10\right)\)
c, \(\dfrac{1}{2}\sqrt{144}-\sqrt{\dfrac{9}{16}}-\left(\dfrac{1}{2}\right)^2\)
= \(\dfrac{1}{2}.12-\dfrac{3}{4}-\dfrac{1}{4}\)
= \(\dfrac{12}{2}-\dfrac{3}{4}-\dfrac{1}{4}=\dfrac{24-3-1}{4}=\dfrac{20}{4}=5\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)
Câu 1: tự lm, dễ tek k lm đc thì mất gốc lun đó
Câu 2: link: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Câu 3: Câu hỏi của phuc le - Toán lớp 7 | Học trực tuyến
Câu 4: Goij 3 đơn vị đó lần lượt là a, b, c (a, b, c \(\in N\)*)
Theo đề ta có: \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b+c=560\)
Áp dung t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{2+5+7}=\dfrac{560}{14}=40\)
\(\Rightarrow\left[{}\begin{matrix}a=40\cdot2=80\\b=40\cdot5=200\\c=40\cdot7=280\end{matrix}\right.\)
Vậy 3 đơn vị được chia lại lần lượt là: 80 triệu ; 200 triệu ; 280 triệu
Câu 5: + 6: cứ thay x, y vào mà lm, phần đồ thị hs dễ bn ạ!
Câu 1: Thực hiện phép tính :
a) \(2.\left(\dfrac{-2}{3}\right)^2-\dfrac{7}{2}=2.\dfrac{4}{9}-\dfrac{7}{2}\)
\(=\dfrac{8}{9}-\dfrac{7}{2}\)
\(=\dfrac{16}{18}-\dfrac{63}{18}=\dfrac{-47}{18}\)
\(b,5\dfrac{4}{13}.\dfrac{-3}{4}+3\dfrac{9}{13}.\left(-0,75\right)=\dfrac{69}{13}.\dfrac{-3}{4}+\dfrac{48}{13}.\dfrac{-3}{4}\)
\(=\left(\dfrac{69}{13}+\dfrac{48}{13}\right).\dfrac{-3}{4}\)
\(=\dfrac{117}{13}.\dfrac{-3}{4}\)
\(=9.\dfrac{-3}{4}=\dfrac{-27}{4}\)
\(c,\left(-1\right)^{2017}+\left|\dfrac{-1}{13}\right|+\sqrt{\dfrac{144}{169}}=-1+\dfrac{1}{13}+\dfrac{12}{13}\)
\(=-1+\dfrac{13}{13}\)
\(=-1+1=0\)
Câu 3: Tìm x, biết:
a)\(\dfrac{3}{5}-x=25\)
\(x=\dfrac{3}{5}-\dfrac{125}{5}\)
\(x=\dfrac{-122}{5}\)
b)\(\dfrac{2}{3}\left|x-1\right|+\dfrac{1}{4}=\dfrac{5}{3}\)
\(\dfrac{2}{3}\left|x-1\right|=\dfrac{20}{12}-\dfrac{3}{12}\)
\(\dfrac{2}{3}\left|x-1\right|=\dfrac{17}{12}\)
\(\left|x-1\right|=\dfrac{17}{12}:\dfrac{2}{3}\)
\(\left|x-1\right|=\dfrac{17}{12}.\dfrac{3}{2}\)
\(\left|x-1\right|=\dfrac{17}{8}\)
Ta có 2 TH: TH1:\(x-1=\dfrac{17}{8}\) TH2:\(x-1=\dfrac{-17}{8}\) \(x=\dfrac{17}{8}+1\) \(x=\dfrac{-17}{8}+1\) \(x=\dfrac{17}{8}+\dfrac{8}{8}=\dfrac{25}{8}\) \(x=\dfrac{-17}{8}+\dfrac{8}{8}=\dfrac{-9}{8}\) Vậy x∈\(\left\{\dfrac{25}{5};\dfrac{-9}{8}\right\}\)Bài 3:
a, \(x:\left(\dfrac{1}{3}-\dfrac{1}{5}\right)=\dfrac{-1}{2}\)
\(x:\left(\dfrac{5-3}{15}\right)=\dfrac{-1}{2}\)
\(x:\dfrac{2}{15}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}.\dfrac{2}{15}\)
\(x=\dfrac{\left(-1\right).1}{1.15}=\dfrac{-1}{15}\)
b,\(\left|x+1\right|-\dfrac{4}{5}=5\dfrac{1}{5}\)
\(\left|x+1\right|-\dfrac{4}{5}=\dfrac{26}{5}\)
\(\left|x+1\right|=\dfrac{26+4}{5}=\dfrac{30}{5}=6\)
=> \(x+1=\pm6\), ta có hai trường hợp:
Trường hợp 1:
x + 1 = 6
x = 6 - 1 = 5
Trường hợp 2:
x + 1 = -6
x = (- 6) + (- 1) = -7
Vậy x ∈ {5;-7}
Gọi số học sinh lớp 7A, 7B, 7C lần lượt là: x; y; x, biết x; y; z tỉ lệ với 10; 9; 8, ta có:
\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{8}\) và x - y = 5
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{8}=\dfrac{x-y}{10-9}=\dfrac{5}{1}=5\)
Suy ra:
\(\dfrac{x}{10}=5\) => x = 5 . 10 = 50
\(\dfrac{y}{9}=5\) => y = 5 . 9 = 45
\(\dfrac{x}{8}=5\) => x = 5 . 8 = 40
=> x = 50, y = 45, z = 40
Vậy lớp 7A có 50 học sinh;
lớp 7B có 45 học sinh;
lớp 7C có 40 học sinh;
Câu 1:
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Vì \(\left\{{}\begin{matrix}\left|3x-5\right|\ge0\forall x\\\left(2y+5\right)^{208}\ge0\forall y\\\left(4z-3\right)^{20}\ge0\forall z\end{matrix}\right.\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\ge0\)
mà theo đề thì: \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-5\right|=0\\\left(2y+5\right)^{208}=0\\\left(4z-3\right)^{20}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy.....
P/s: mấy câu kia dễ tự làm, câu 6 có đầy trên gu gồ nhé, tự tìm
Câu 6
Ta có:\(\dfrac{a}{c}=\dfrac{c}{b}\) \(\rightarrow a.b=c^2\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+\left(a.b\right)}{b^2+\left(a.b\right)}=\dfrac{a}{b}\)
Ta thấy \(\dfrac{a+b}{2}+\sqrt{\dfrac{a^2+b^2}{2}}+\left(\dfrac{a+b}{2}-\sqrt{\dfrac{a^2+b^2}{2}}\right)=a+b\)
Điều này có nghĩa là khi ta xóa 2 số \(a,b\) và thay bằng 2 số \(\dfrac{a+b}{2}+\sqrt{\dfrac{a^2+b^2}{2}},\dfrac{a+b}{2}-\sqrt{\dfrac{a^2+b^2}{2}}\) thì tổng của các số trên bảng là không đổi.
Tổng các số trên bảng ban đầu là \(2021+2022+2023+2024=8090\), do đó, sau mỗi lượt chơi, tổng các số trên bảng luôn phải bằng 8090
Tuy nhiên, khi trên bảng còn 4 số 2025 thì tổng của chúng lại là \(4.2025=8100\). Như vậy, ta không thể có được 4 số 2025.