K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2024

3 con dê nâu ,vàng,trắng cân nặng tất cả 127 kg. biết cả dê nâu và dê vàng cân nặng 79.6kg và dê trắng nặng hơn dê vàng 6,5 kg.hỏi mỗi con dê cân nặng bao nhiêu kg

 

 

 

22 tháng 12 2024

 

76

 

 

5 tháng 2 2022

Xét p=2

⇒ \(2^2+2^2=4+4=8\left(L\right)\)

Xét p=3

⇒ \(2^3+3^2=8+9=17\left(TM\right)\)

Xét p>3

⇒ p+ 2= (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.

Do đó:  2p+p2là hợp số (L)

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

5 tháng 2 2022
7 tháng 3 2024

p2 = 1 + 6q2

⇒ p là số lẻ

Đặt p = 2k + 1

 p2 = 4k2 + 4k + 1

 4k2 + 4k = 6q2

 2k2 + 2k = 3q2

 3q2 là số chẵn mà 3 là số lẻ

 q2 là chẵn => q là chẵn => q là 2

 p = \(\sqrt{1+6\cdot2^2}\) = 5

23 tháng 9 2019

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

23 tháng 9 2019

giải

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

16 tháng 4 2022

-Vì p,q là 2 số nguyên tố lớn hơn 3 \(\Rightarrow\)p,q có dạng \(3k+1\) hoặc \(3h+2\).

-Có: \(p^2-q^2=p^2+pq-pq-q^2=p\left(p+q\right)-q\left(p+q\right)=\left(p+q\right)\left(p-q\right)\).

*\(p=3k+1;q=3h+2\).

\(p^2-q^2=\left(3k+1+3h+2\right)\left(3k+1-3h-2\right)=\left(3k+3h+3\right)\left(3k+1-3h-2\right)⋮3\)

-Các trường hợp p,q có cùng số dư (1 hoặc 2) khi chia cho 3:

\(\Rightarrow\left(p^2-q^2\right)⋮3̸\).

-Vậy \(\left(p^2-q^2\right)⋮3\)

 

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

16 tháng 9 2019

Các ban giúp mình nha ! Mình đang cần gấp. Bạn nào giải được thì mình k cho