K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2024
  • Sản xuất ít nhất 12 viên kim cương to: 5x + 2y ≥ 12
  • Sản xuất ít nhất 9 viên kim cương nhỏ: 3x + 3y ≥ 9 hay x + y ≥ 3
  • Sử dụng tối đa 4 tấn Cacbon mỗi loại: 0 ≤ x ≤ 4 và 0 ≤ y ≤ 4
  • Tổng tiền mua Cacbon không vượt quá 500 triệu đồng: Giả sử giá mỗi tấn Cacbon loại 1 là a triệu đồng và giá mỗi tấn Cacbon loại 2 là b triệu đồng, ta có ràng buộc: ax + by ≤ 500. Tuy nhiên, đề bài không cung cấp giá của mỗi loại Cacbon, nên ta tạm bỏ qua ràng buộc này. Chúng ta sẽ giải bài toán với các ràng buộc còn lại và xem xét lại nếu có thêm thông tin
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Thu nhập trung bình của thành viên trong công ty là

\(\bar X = \frac{{20.1 + 4.5}}{6} = \frac{{40}}{6} \approx 6,67\)

Vậy thu nhập trung bình của các thành viên là 6,67 triệu đồng.

b) Ta thấy rõ ràng thu nhập của giám đốc cao hơn thu nhập trung bình rất nhiều (khoảng 13,3 triệu), còn thu nhập của mỗi nhân viên thì gần với thu nhập trung bình hơn (khoảng 2,67 triệu). Như thế, thu nhập trung bình không phản ánh đúng thu nhập của nhân viên công ty.

Chú ý

Công ty có 6 người thì cần tính thu nhập trung bình của 6 người.

15 tháng 1 2019

Chọn A

Gọi x; y lần lượt là số xe loại M, loại F cần thuê

Từ bài toán ta được hệ bất phương trình

Tổng chi phí T(x; y) = 4x+ 3y (triệu đồng)

Bài toán trở thành  là tìm x; y nguyên không âm thoả mãn hệ (*)  sao cho T( ;xy)  nhỏ nhất.

Từ đó ta cần thuê 5 xe hiệu M và 4 xe hiệu F thì chi phí vận tải là thấp nhất.

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể...
Đọc tiếp

Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 6 triệu đồng, một tấn sản phẩm loại II lãi 4,8 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 chỉ làm việc không quá 4 giờ. Gỉa sử số tấn sản phẩm loại I, II sản xuất trong một ngày lần lượt là x,y

a) viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó

b) gọi F( triệu đồng ) là số tiền lãi thu được trong một ngày

c) Cần sản xuất bao nhiêu tấn sản phẩm loại I và loại II trong một ngày để số tiền lãi thu được là cao nhất

0
Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong...
Đọc tiếp

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó đề lợi nhuận thu được là lớn nhất.

2
24 tháng 9 2023

Tham khảo:

 

a)

Bước 1: Ta có:

 

Loại A

Loại B

Giá mua vào

10 triệu đồng/1 máy

20 triệu đồng/1 máy

Lợi nhuận

2,5 triệu đồng/1 máy

4 triệu đồng/1 máy

Bước 2: Lập hệ bất phương trình

Vì số lượng máy là số tự nhiên nên ta có \(x \ge 0;y \ge 0\)

Vốn nhập vào x máy loại A và y máy loại B là \(10x + 20y\)(triệu đồng)

4 tỉ đồng=4000 (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có bất phương trình

\(10x + 20y \le 4000\) \( \Leftrightarrow x + 2y \le 400\)

Vì tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy nên ta có \(x + y \le 250\).

Vậy ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Bước 3: Xác định miền nghiệm

Miền nghiệm là tứ giác OABC với tọa độ các đỉnh này là O(0;0), A(250;0), B(100;150), C(0;200)

b) Lợi nhuận hàng tháng là F(x;y)=2,5x+4y(triệu đồng)

c) Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Ta có F(0;0)=0, F(250;0)=2,5.250+4.0=625

F(100;150)=2,5.100+4.150=850

F(0;200)=2,5.0+4.200=800

Giá trị lớn nhất là F(100;150)=850.

Vậy cửa hàng cần đầu tư kinh doanh 100 máy A và 150 máy B.

24 tháng 9 2023

a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) (x,y≥0).

Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250

Tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y ≤ 4 000 hay x + 2y ≤ 400.

Ta có hệ bất phương trình: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Ta xác định miền nghiệm của hệ bất phương trình trên:

+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.

- Vẽ đường thẳng d: x + y = 250.

- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.

+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.

- Vẽ đường thẳng d’: x + 2y  = 400.

- Vì 0 + 2.0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400

Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.

Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với O(0;0), A(0; 200), C(100;150), B(250;0)

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt (ảnh 1)

b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).

Vậy F(x;y) = 2,5x + 4y.

c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.

Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;

Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;

Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;

Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.

Do đó F(x;y) lớn nhất bằng 850 tại x = 100 và y = 150.

Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.

Câu 2. Một hãng nước hoa dự định dùng hai nguồn nguyên liệu để chiết xuất ít nhất $280$ lít nước hoa Eau de Toilette (EDT) và $18$ lít nước hoa Parfum. Với một tấn nguyên liệu của nguồn I, người ta có thể chiết xuất được $40$ lít EDT và $1,2$ lít Parfum. Với một tấn nguyên liệu của nguồn II, người ta có thể chiết xuất được $20$ lít EDT và $3$ lít chất Parfum. Giá mỗi tấn nguyên...
Đọc tiếp

Câu 2. Một hãng nước hoa dự định dùng hai nguồn nguyên liệu để chiết xuất ít nhất $280$ lít nước hoa Eau de Toilette (EDT) và $18$ lít nước hoa Parfum. Với một tấn nguyên liệu của nguồn I, người ta có thể chiết xuất được $40$ lít EDT và $1,2$ lít Parfum. Với một tấn nguyên liệu của nguồn II, người ta có thể chiết xuất được $20$ lít EDT và $3$ lít chất Parfum. Giá mỗi tấn nguyên liệu từ nguồn I là $4$ trăm triệu đồng và từ nguồn II là $3$ trăm triệu đồng. Người ta phài dùng bao nhiêu tấn nguyên liệu từ mỗi nguồn để chi phí mua nguyên liệu là ít nhất mà vẫn đạt được mục tiêu đề ra? Biết rằng cơ sở cung cấp nguyên liệu nguồn I chỉ có thể cung cấp tối đa $10$ tấn và nguồn II tối đa là $9$ tấn.

0
24 tháng 9 2023

Tham khảo:

Gọi x, y lần lượt là số tủ loại A, loại B mà công ty cần mua.

Ta có các điều kiện ràng buộc đối với x, y như sau:

-  Hiển nhiên \(x \ge 0,y \ge 0\)

-  Mặt bằng nhiều nhất là 60 \({m^2}\) nên \(3x + 6y \le 60\)

-  Ngân sách mua tủ không quá 60 triệu đồng nên \(7,5x + 5y \le 60\)

Từ đó ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}3x + 6y \le 60\\7,5x + 5y \le 60\\x \ge 0\\y \ge 0\end{array} \right.\)

Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.

 

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Với các đỉnh \(O(0;0),A(0;10),\)\(B(2;9),\)\(C(8;0).\)

Gọi F là thể tích đựng hồ sơ, đơn vị \(m^3\). Ta có x tủ loại A sức chứa 12 \(m^3\) và y tủ loại B sức chứa \(18m^3\) nên tổng thể tích để đựng hồ sơ là: \(F = 12x + 18y\)

Tính giá trị của F tại các đỉnh của tứ giác:

Tại \(O(0;0),\)\(F = 12.0 + 18.0 = 0\)

Tại \(A(0;10):\)\(F = 12.0 + 18.10 = 180\)

Tại \(B(2;9),\)\(F = 12.2 + 18.9 = 186\)

Tại \(C(8;0).\)\(F = 12.8 + 18.0 = 96\)

F đạt giá trị lớn nhất bằng \(186\) tại \(B(2;9),\)

Vậy công ty đó nên mua 2 tủ loại A và 9 tủ loại B để thể tích đựng hồ sơ là lớn nhất.