\(A=\dfrac{2015a}{ab+2015a+2015}+\dfrac{b}{bc+b+201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2024

Bước 1: Đặt nhân tử chung:

  • Ở phân số thứ nhất, ta đặt 2015 làm nhân tử chung ở mẫu: A = 1 / (b + b.a + 1) + b / (bc + b + 2015) + c / (ac + c + 1)

  • Ở phân số thứ hai, ta đặt b làm nhân tử chung ở mẫu: A = 1 / (b + b.a + 1) + 1 / (c + 1 + 2015/b) + c / (ac + c + 1)

  • Ở phân số thứ ba, ta đặt c làm nhân tử chung ở mẫu: A = 1 / (b + b.a + 1) + 1 / (c + 1 + 2015/b) + 1 / (a + 1 + 1/c)

Bước 2: Thay thế abc = 2015:

  • Ta thấy ở phân số thứ hai, 2015/b có thể thay bằng ac (vì abc = 2015).
  • Tương tự, ở phân số thứ ba, 1/c có thể thay bằng ab.

Vậy biểu thức A trở thành:

A = 1 / (b + b.a + 1) + 1 / (c + 1 + ac) + 1 / (a + 1 + ab)

Bước 3: Quy đồng mẫu số:

  • Mẫu số chung của ba phân số là (b + ba + 1)(c + 1 + ac)(a + 1 + ab)
  • Sau khi quy đồng và rút gọn, ta sẽ thu được một biểu thức đơn giản hơn.

Bước 4: Tính toán:

  • Sau khi quy đồng và rút gọn, ta sẽ tính toán các phép cộng trừ nhân chia để tìm ra kết quả cuối cùng.

Kết luận:

Qua các bước phân tích và biến đổi trên, ta có thể thấy rằng giá trị của biểu thức A sẽ phụ thuộc vào các giá trị cụ thể của a, b, c.

16 tháng 12 2015

\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+a}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+a}=\frac{ac+c+1}{ac+c+1}=1\)

8 tháng 1 2017

Ta có:
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{abca}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{ac+c+1}{ac+c+1}=1\)

Vậy M = 1

8 tháng 1 2017

Thay 2015= abc vào M ta được:

M = \(\frac{abca}{ab+abca+abc}\) + \(\frac{b}{bc+b+abc}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{abca}{ab\left(1+ac+c\right)}\) + \(\frac{b}{b\left(c+1+ac\right)}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{ac}{1+ac+c}\) + \(\frac{1}{c+1+ac}\) + \(\frac{c}{ac+c+1}\)

M = \(\frac{1+ac+c}{1+ac+c}\) = 1

Vây M = 1

XONG ! ok

AH
Akai Haruma
Giáo viên
1 tháng 7 2019

Lời giải:
ĐKĐB tương đương với \(\left\{\begin{matrix} a^4=12c-2015\\ b^4=12a-2015\\ c^4=12b-2015\end{matrix}\right.(*)\)

\(\Rightarrow \left\{\begin{matrix} a^4-b^4=12(c-a)\\ b^4-c^4=12(a-b)\\ c^4-a^4=12(b-c)\end{matrix}\right.\)

Nhân theo vế:
\((a^4-b^4)(b^4-c^4)(c^4-a^4)=12^3(a-b)(b-c)(c-a)\)

\(\Leftrightarrow (a-b)(a+b)(a^2+b^2)(b-c)(b+c)(b^2+c^2)(c-a)(c+a)(c^2+a^2)=12^3(a-b)(b-c)(c-a)\)

\(\Leftrightarrow (a-b)(b-c)(c-a)[\prod (a+b)\prod (a^2+b^2)-12^3]=0\)

TH1 :Nếu $a=b$ \(\Rightarrow 12(c-a)=a^4-b^4=0\Rightarrow c=a\)

\(\Rightarrow a=b=c\)

Khi đó:

\(P=\frac{670a+b+c}{a}+\frac{670b+c+a}{b}+\frac{670c+a+b}{c}=\frac{670a+a+a}{a}+\frac{670a+a+a}{a}+\frac{670a+a+a}{a}\)

\(=672+672+672=2016\)

Tương tự $b=c,c=a$ ta cũng thu được như trên

TH2: Nếu \(\prod (a+b)\prod (a^2+b^2)-12^3=0\)

Từ $(*)$ ta suy ra \(\left\{\begin{matrix} 12c-2015\geq 0\\ 12a-2015\geq 0\\ 12b-2015\geq 0\end{matrix}\right.\Rightarrow a,b,c\geq \frac{2015}{12}\)

Do đó: \(\prod (a+b)\prod (a^2+b^2)\geq (\frac{2015}{6})^3(\frac{2.2015^2}{12^2})^3>12^3\)

\(\Rightarrow \prod (a+b)\prod (a^2+b^2)-12^3>0\) nên TH này loại.

Vậy.........

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

27 tháng 11 2017

Nguyễn NamAkai HarumaNguyễn Thanh HằngRibi Nkok Ngoklê thị hương giangQuang Ho SiAnh TriêtTrần Quốc LộcHàn VũHoàng Thị Ngọc AnhAn Nguyễn BáNguyễn Huy ThắngPhương An

28 tháng 11 2017

sao hăm ai lm zạy nè khó wa ak

1 tháng 5 2018

a.

\(Q=x^2+2y^2+2xy-2y+2015=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+2014=\left(x+y\right)^2+\left(x-1\right)^2+2014\ge2014\)

''='' xảy ra khi: \(\left\{{}\begin{matrix}x=-y\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy \(Q_{min}=2014\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b. vào câu hỏi tt hoặc sớt gg sẽ có

14 tháng 1 2017

a/ Điều kiện xác định \(\hept{\begin{cases}a^2+a\ne0\\a^2-a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}}\)

b/ \(M=\frac{a^2-1}{2016+2015a^2}\left(\frac{2015a-2016}{a+a^2}+\frac{2016+2015a}{a^2-a}\right)\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}\left(\frac{2015a-2016}{a\left(a+1\right)}+\frac{2016+2015a}{a\left(a-1\right)}\right)\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{2016+2015a^2}.\frac{2\left(2015a^2+2016\right)}{a\left(a+1\right)\left(a-1\right)}\)

\(=\frac{2}{a}=\frac{2}{2016}=\frac{1}{1008}\)