\(\phi\) là tỉ lệ gì trong toán học

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2024

Ký hiệu ϕ (phi) thường được sử dụng trong toán học để biểu diễn nhiều khái niệm khác nhau, tùy thuộc vào ngữ cảnh. Dưới đây là một số ý nghĩa phổ biến của ϕ:

4 tháng 10 2020

\(\Delta\)là delta, hay còn gọi là biệt thức delta, được tính bởi công thức \(\Delta=b^2-4ac\).

Trong đó \(a,b,c\)là các hệ số của phương trình: \(ax^2+bx+c=0\left(a\ne0\right)\)

Còn tại sao \(\Delta=b^2-4ac\)thì lục lại công thức nghiệm của phương trình bậc 2

Qua delta chúng ta có thể tìm được nghiệm của \(ax^2+bx+c=0\left(a\ne0\right)\).

\(\Delta< 0\)thì phương trình vô nghiệm, \(\Delta\ge0\)thì phương trình có nghiệm \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)

4 tháng 10 2020

Delta là biệt thức. Vậy tại sao biệt thức ấy giúp bạn tìm ra nghiệm ?, tại sao nó có những đặc tính khác như vậy?
bạn trả lời theo cái cách luôn chấp nhận vô điều kiện những gì được giảng dạy, không tò mò, không sáng tạo.
Trước tiên để hiểu nó là gì, bạn cần phải hiểu phương trình bậc 2 dùng để làm gì ?

Xét ngược lại từ định lý Vi-et thì phương trình bậc 2 dùng để tìm 2 số khi biết tổng và tích của chúng, bạn có thể mở lại định lý để hiểu.

trong đó c là tích 2 nghiệm còn b là tổng 2 nghiệm
VD: PT x2 +bx + c = 0; hệ số a = 1
như đã biết giữa 2 hình CN và hình V có cùng chu vi thì hình V luôn có diện tích lớn hơn. 
nên nếu (b/2)2 = c thì phương trình có nghiệm kép ngay tại điểm b/2 
nếu (b/2)2 > c thì c = ((b/2) - m) x ((b/2) + m), m là khoảng cách từ 2 nghiệm tới điểm (b/2) là trung bình cộng của 2 nghiệm
<=> c = (b/2)2 - m2 <=>  m 2= (b/2)2- c <=> 4m2 = b- 4c
mà delta = b 2
- 4ac (a = 1) => delta = 4m2
mà hiệu của 2 nghiệm x1, x2  = 2 m vậy nên Delta chính là bình phương hiệu 2 nghiệm
bạn thử nhìn lại cách tìm 2 nghiệm pt xem có phải số lớn = (tổng + hiệu) /2 còn số bé là (tổng - hiệu) /2 không
với tổng là c còn hiệu là \(\sqrt{delta}\) 
nói vậy chứ chẳng ai hiểu mình đâu huhu

 

19 tháng 7 2018

123 cây , 144 cây

50 %

26 tháng 5 2017

a)ta có :x+y=a1\(\sqrt{2}\)+b1+a2\(\sqrt{2}\)+b2=(a1+a2)\(\sqrt{2}\)+b1+b2

mặt khác, ta lại có a1,a2,b1,b2 là những số hữu tỉ nên (a1+a2);(b1+b2) cũng là những số hữu tỉ

=>biểu thức x+y cũng được viết dưới dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ.

ta xét tích x.y=(a1\(\sqrt{2}\)+b1)(a2\(\sqrt{2}\)+b2)=2a1.a2+a1.b2\(\sqrt{2}\)+b1.a2.\(\sqrt{2}\)+b1.b2=(a1b2+b1a2)\(\sqrt{2}\)+(2a1a2+b1b2)

a1,a2,b1,b2 là những số hữu tỉ nên các tích a1a2;b1b2;a1b2;a2b1 là những số hữu tỉ nên x.y cững có dạng a\(\sqrt{2}\)+b với a,b là số hữu tỉ

b) xét thương \(\dfrac{x}{y}\)=\(\dfrac{a_1\sqrt{2}+b_1}{a_2\sqrt{2}+b_2}=\dfrac{\left(a_1\sqrt{2}+b_1\right)\left(a_2\sqrt{2}-b_2\right)}{\left(a_2\sqrt{2}+b_2\right)\left(a_2\sqrt{2}-b_2\right)}\)

=\(\dfrac{2a_1a_2-a_1b_2\sqrt{2}+a_2b_1\sqrt{2}-b_1b_2}{2a_2^2-b_2^2}\)=\(\dfrac{\left(a_2b_1-a_1b_2\right)\sqrt{2}}{2a_2^2-b_2^2}+\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)

a1,b1,a2,b2 là những số hữu tỉ nên a1b2;a1a2;b1b2;a2b1 cũng là những số hữu tỉ hay \(\dfrac{a_2b_1-a_1b_2}{2a_2^2-b_2^2};\dfrac{2a_1a_2-b_1b_2}{2a_2^2-b_2^2}\)cũng là những số hữu tỉ nên \(\dfrac{x}{y}\) cũng có dạng a\(\sqrt{2}\)+b với a và b là những số hữu tỉ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

14 tháng 7 2018

sin60o = cos30o

cos75o = sin15o

sin50o30' = cos39o30'

cot82o = tan8o

tan78o = cot12o

7 tháng 2 2019

Áp dụng BĐT Cauchy-schwarz ta có:

\(P=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+12}=\frac{3}{5}\)

Dấu " = " xảy ra <=> a=b=c=2

7 tháng 2 2019

Áp dụng BĐT AM-GM,ta có:

\(P\ge3\sqrt[3]{\frac{1}{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}}=\frac{3}{\sqrt[3]{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}}\)

\(\ge\frac{3}{\frac{\left(3+ab+bc+ca\right)}{3}}=\frac{9}{3+ab+bc+ca}\)

Ta có BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

Áp dụng vào,ta có: \(P\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+a^2+b^2+c^2}=\frac{9}{15}=\frac{3}{5}\)

4 tháng 11 2017

Theo đề bài, ta có:

\(\frac{x}{\frac{7}{2}}=\frac{y}{\frac{9}{2}}\)và \(x+y=32\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{7}{2}}=\frac{y}{\frac{9}{2}}=\frac{x+y}{\frac{7}{2}+\frac{9}{2}}=\frac{32}{\frac{16}{2}}=\frac{32}{8}=4\)

\(\Rightarrow\frac{x}{\frac{7}{2}}=4\Rightarrow x=\frac{7}{2}\cdot4=14\)

\(\Rightarrow\frac{y}{\frac{9}{2}}=4\Rightarrow y=\frac{9}{2}\cdot4=18\)

Vậy x=14;y=18