![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
3x(x2 - 4) = 0
Mà 3 khác 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2;2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+3\right)^3-3\cdot\left(3x+1\right)^2+\left(2x+1\right)\cdot\left(4x^2-2x+1\right)=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-3\cdot\left(9x^2+6x+1\right)+8x^3-4x^2+2x+4x^2-2x+1=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-27x^2-18x-3+8x^3-4x^2+2x+4x^2-2x+1=54\)
\(\Leftrightarrow9x^3-18x^2+9x-29=0\)
\(\Leftrightarrow x=2,208024627\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\left(x-3\right)-12+4x=0\)
\(\Leftrightarrow x^2-3x-12+4x=0\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{3x^6-4x^3}{x^3}-\dfrac{\left(3x+1\right)^2}{3x+1}-\dfrac{3x^7}{x^5}=0\)
\(\Leftrightarrow3x^3-4-3x-1-3x^2=0\)
\(\Leftrightarrow3x^3-3x^2-3x-5=0\)
\(\Leftrightarrow x\simeq1,9506\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:Biến đổi biểu thức sau thành tích các đa thức
16x^2(4x - y) - 8y^2(x + y)+xy (16x+8y)=64x3-16x2y-8xy2-8y3+16x2y+8xy2
=64x3-8y3=(4x)3-(2y)3=(4x-2y)(16x2+8xy+4y)
Bài 2: Tìm x biết
a) (x - 2)^3 -(x - 3)(x^2 + 3x + 9) + 6(x + 1)^2 = 15
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=15
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=15
<=>24x-25=15
<=>24x=-10
<=>x=-5/12
b) 6(x + 1)^2 - 2(x + 1) ^3 + 2(x - 1)(x^2 +x +1) = 1
<=>6(x2+2x+1)-2(x3+3x2+3x+1)+2(x3-1)=1
<=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1
<=>6x+2=1
<=>6x=-1
<=>x=-1/6
Bài 3: Tính giá trị biểu thức
D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2 với x = 99
D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2
=(2x - 3)^2 - 2(2x - 3)(2x - 5) + (2x - 5)^2
=[(2x-3)-(2x-5)]2
=(2x-3-2x+5)2
=22=4
=>D ko phụ thuộc vào giá trị của x nên
với x=99 D = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-4x^2-4x+1\)
\(=x^3-5x^2+x+x^2-5x+1\)
\(=x\left(x^2-5x+1\right)+\left(x^2-5x+1\right)\)
\(=\left(x+1\right)\left(x^2-5x+1\right)\)
Mà \(x^3-4x^2-4x+1=A\left(x^2-5x+1\right)\)
\(\Rightarrow A=x+1\)
\(x^3-3x^2-4x+12=6\)
=>\(x^3-3x^2-4x+6=0\)
=>\(x^3-x^2-2x^2+2x-6x+6=0\)
=>\(\left(x-1\right)\left(x^2-2x-6\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-2x-6=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x^2-2x+1=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=7\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x-1=\sqrt{7}\\x-1=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{7}+1\\x=-\sqrt{7}+1\end{matrix}\right.\)
\(x^3-3x^2-4x+12=6\\ \Rightarrow x^3-3x^2-4x+6=0\\ \Rightarrow\left(x^3-x^2\right)-\left(2x^2-2x\right)-\left(6x-6\right)=0\\ \Rightarrow x^2\left(x-1\right)-2x\left(x-1\right)-6\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x^2-2x-6\right)=0\\ \Rightarrow\left(x-1\right)\left[\left(x^2-2x+1\right)-7\right]=0\\ \Rightarrow\left(x-1\right)\left[\left(x-1\right)^2-7\right]=0\\ \Rightarrow\Rightarrow\left(x-1\right)\left(x-1-\sqrt{7}\right)\left(x-1+\sqrt{7}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x-1-\sqrt{7}=0\\x-1+\sqrt{7}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1+\sqrt{7}\\x=1-\sqrt{7}\end{matrix}\right.\)
Vậy...