Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhé!
a) Xét tam giác ADC và tam giác BEC có:
\(\widehat{C}\)chung
\(\frac{CD}{CE}=\frac{CA}{CB}\)(2 tam giác vuông CDE và CAB đồng dạng)
=> Tam giác ADC đồng dạng với tam giác BEC (cgc) (đpcm)
b) Tam giác AHD vuông tại H (gt)
=> \(\widehat{BEC}=\widehat{ADC}=135^o\)
Nên \(\widehat{AEB}=45^o\)do đó tam giác ABE vuông tại A
=> BE=\(AB\sqrt{2}=3\sqrt{2}\)
Nguồn: Đặng Thị Nhiên
c) Tam giác ABE vuông tại A nên tia AM là phân giác BAC
\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\)
Vì tam giác ABC đồng dạng tam giác DEC nên:
\(\frac{AB}{AC}=\frac{ED}{DC}=\frac{AH}{HC}=\frac{HD}{HC}\)(DE//AH)
Do đó: \(\frac{GB}{GC}=\frac{HD}{HC}\Rightarrow\frac{GB}{GB+GC}=\frac{HD}{HD+HC}\Rightarrow\frac{GB}{GC}=\frac{AH}{AH+HC}\left(đpcm\right)\)
Nguồn: Đặng Thị Nhiên
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác HDEI có
\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)
=>HDEI là hình chữ nhật
b:
Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD
nên ΔAHD vuông cân tại H
=>\(\widehat{ADH}=45^0\)
Xét tứ giác AEDB có
\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
=>AEDB là tứ giác nội tiếp
=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Trần Hữu Phước - Toán lớp 8 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét tứ giác HDEI có \(\widehat{HDE}=\widehat{HIE}=\widehat{DHI}=90^0\)
nên HDEI là hình chữ nhật
Xét tứ giác ABDE có \(\widehat{BAE}+\widehat{BDE}=90^0+90^0=180^0\)
nên ABDE là tứ giác nội tiếp
=>\(\widehat{AEB}=\widehat{ADB}\)
mà \(\widehat{ADB}=\widehat{ADH}=45^0\)(ΔHAD vuông cân tại H)
nên \(\widehat{AEB}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
A B C D H E K I M
a/
Xét tư giác HDEI
\(AH\perp BC\left(gt\right)\Rightarrow IH\perp BC;ED\perp BC\left(gt\right)\)
=> IH//ED (cùng vg với BC)
\(BC\perp AH\left(gt\right)\Rightarrow DH\perp AH;EI\perp AH\left(gt\right)\)
=> DH//EI (cùng vg với AH)
=> HDEI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
\(\widehat{AHD}=90^o\)
=> HDEI là HCN
Xét tư giác ABDE có
A và D cùng nhìn BE dưới 2 góc = nhau và \(=90^o\)
=> ABDE là tứ giác nội tiếp
\(\widehat{ABE}=\widehat{ADE}\) (góc nt cùng chắn cung AE) (1)
\(\widehat{AEB}=\widehat{ADB}\) (góc nt cùng chắn cung AB) (2)
ED//AH => \(\widehat{ADE}=\widehat{HAD}\) (góc so le trong) (3)
HA = HD (gt) => tg HAD cân tại H \(\Rightarrow\widehat{HAD}=\widehat{ADB}\) (4)
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{ABE}=\widehat{AEB}\) => tg ABE cân tại A
=> AE = AB
b/
Xét tg cân ABE có
MB = ME (gt) \(\Rightarrow\widehat{BAK}=\widehat{CAK}\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh)
Xét tg ABC có
\(\dfrac{KB}{AB}=\dfrac{KC}{AC}\) (Trong một tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn ấy)
\(\Rightarrow KB.AC=KC.AB\) mà AB=AE (cmt)
\(\Rightarrow KB.AC=KC.AE\)