K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2024

A = 2 + 22 + 23 + 24 + … + 2100

A = (2 + 22) + (23 + 24) + … + (299 + 2100)

A = 6 + 2. (2 + 22) + … + 298 . (2 + 22)

A = 6 + 2. 6 + … + 298 . 6

A = 6 . (1 + 2+ … + 298)

Vậy A chia hết cho 6 (theo tính chất chia hết của một tích).

6 tháng 12 2024

Số số hạng của A:

\(100-1+1=100\) (số)

Do \(100⋮2\) nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=6+2^2.\left(2+2^2\right)+...+2^{98}.\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6\)

\(=6.\left(1+2^2+...+2^{98}\right)⋮6\)

Vậy \(A⋮6\)

10 tháng 2 2016

minh moi hoc lop 5 thoi

3 tháng 11 2018

a) Ta có: \(A=1+2+2^2+2^3+...+2^{29}\)

\(2A=2+2^2+2^3+2^4+...+2^{30}\)

Mà \(A=2A-A=2^{30}-1\)

b)Ta có: \(2^{30}=\left(2^2\right)^{15}=4^{15}=...4\) (số có tận cùng là 4 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.

Do vậy \(A=2^{30}-1=...4-1=...3\)

Áp dụng tính chất :Số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

Ta có: \(A=...3\) do đó A không phải là 1 số chính phương (đpcm)

15 tháng 10 2018

\(1,A=1+3+3^2+...+3^{10}\)

\(A=1.\left(1+3+9\right)+...+3^6.\left(1+3+9\right)+3^{10}\)

Vì \(\hept{\begin{cases}1.\left(1+3+9+\right)+3^3.\left(1+3+9\right)+3^6.\left(1+3+9\right)⋮\\3^{10}⋮̸13\end{cases}13}\)

\(A⋮̸13\)

1 tháng 11 2015

Ta có P là số nguyên tố > 3 nên P là số lẻ            (1) 

Vì P > 3 nên P có 2 dạng:

+ Nếu P = 3n + 1(n thuộc N), ta có:

P + 1 = 3n + 1 + 2 = 3n + 3 là hợp số, loại.

+ Nếu P = 3n + 2(n thuộc N), ta có:

P + 1 = 3n + 2 + 2 = 3n + 4 là số nguyên tố, chọn.

Thay P = 3n + 2 vào P + 1, ta có: 

3n + 2 + 1 = 3n + 3 = 3(n + 1)

Mà từ (1) => 3n + 2 là số lẻ.

=> 3n là số lẻ 

=> n là số lẻ

=> n + 1 là số chẵn và chia hết cho 2.

Vì n + 1 chia hết cho 2 => 3(n + 1) chia hết cho 2.

Mà 3 chia hết cho 3 => 3(n + 1) chia hết cho 3.

=> 3(n + 1) chia hết cho 6 (ƯCLN(2; 3) = 1)

 

22 tháng 10 2019

tu di ma biet .may thang do ngu

Vì A và 2A đồng dư nên 2A-A chia hết cho 9 hay A chia hết cho 9 (điều phải chứng minh)

28 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

\(\implies\) \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)

  

11 tháng 3 2020

xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho

22 tháng 12 2018

\(Tacó:\left(2+2^2\right)\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)

\(A=6\cdot\left(2^3+2^4\right)\cdot...\cdot\left(2^{59}+2^{60}\right)\)

\(⋮\)6 do A \(\div\)\(\times\)6=A

22 tháng 12 2018

-  Xét \(A⋮2\)

Ta có :\(A=2+2^2+2^3+....+2^{60}\)

\(=2.\left(1+2+2^2+.....+2^{59}\right)\)

Vì \(2⋮2;\left(1+2+2^2+....+2^{59}\right)\inℕ^∗\)

Nên \(2.\left(1+2+2^2+....+2^{59}\right)⋮2\)

Do đó : \(A⋮2\)          \(\left(1\right)\)

- Xét \(A⋮3\)

Ta có : \(A=2+2^2+2^3+.....+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+.....+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+2^5\left(1+2\right)+.....+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)

\(=3.\left(2+2^3+2^5+....+2^{59}\right)\)

Vì \(3⋮3;\left(2+2^3+2^5+....+2^{59}\right)\inℕ^∗\)

Nên \(3.\left(2+2^3+2^5+....+2^{59}\right)⋮3\)            \(\left(2\right)\)

Từ (1) và (2), kết hợp với \(2.3=6;\left(2,3\right)=1\) suy ra  \(A⋮6\)      \(\left(đpcm\right)\)

13 tháng 11 2019

Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

13 tháng 11 2019

Đặt \(B=2^2+2^3+2^4+...+2^{20}\)

\(2B=2^3+2^4+2^5+...+2^{21}\)

\(B=2B-B=2^{21}-2^2=2^{21}-4\)

\(A=4+B=4+2^{21}-4=2^{21}\left(dpcm\right)\)