Bài 12. Chứng minh rằng hàm số
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Với \(x_1< x_2\) thì ta có: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-2023x_1+2024-\left[-2023x_2+2024\right]}{x_1-x_2}\)

\(=\dfrac{-2023x_1+2024+2023x_2-2024}{x_1-x_2}\)

\(=\dfrac{-2023x_1+2023x_2}{x_1-x_2}=\dfrac{-2023\left(x_1-x_2\right)}{x_1-x_2}=-2023< 0\)

=>Hàm số nghịch biến với mọi x thực

1 tháng 12 2024

Ok

 

1 tháng 5 2016

bài toán trên online math, bạn tự tìm hiểu

14 tháng 6 2020

A.   26=a27+b

B.    

Câu 1: 

Số học sinh giỏi là:

688:43x18=288(bạn)

Số học sinh khá là:

688-288=400(bạn)

Câu 2 đề thiếu rồi bạn

15 tháng 12 2016

Gọi số đĩa là a (a ϵ N*)

Theo bài ra ta có:96\(⋮\)a;36\(⋮\)a và a lớn nhất.

Ta có:96=25.3 ;36=22.32

=>ƯCLN(96;36)=22.3=4.3=12

Vậy có thể chia nhiều nhất thành 12 đĩa.

Mỗi đĩa có số kẹo là:96:12=8(cái)

Mỗi đĩa có số bánh là:36:12=3(cái)

Vậy mỗi đĩa có 8 cái kẹo và 3 cái bánh.

 

15 tháng 12 2016

Ta có :ƯCLN (96, 36)= 12
=> Có thể chia đc nhiều nhất 12 đĩa và :
Mỗi đĩa có số cái kẹo là : 96 :12 =8 cái kéo
Mỗi đĩa có số cái bánh là 36:12 =3 cái
Đáp số

19 tháng 9 2020

a)\(2\overrightarrow{OA}+\overrightarrow{DB}+\overrightarrow{DC}\)

\(=2\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{DB}+\overrightarrow{DO}+\overrightarrow{DC}\)

\(=2\overrightarrow{OA}-2\overrightarrow{OA}=\overrightarrow{O}\)(ĐPCM)

b) \(20\overrightarrow{A}+\overrightarrow{OB}+\overrightarrow{OC}\)

\(=2\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{OB}+\overrightarrow{DC}-\overrightarrow{DO}\)

\(=20\overrightarrow{A}-20\overrightarrow{A}+4\overrightarrow{OD}=4\overrightarrow{OD}\)(ĐPCM)

Lần sau nhớ thêm dấu vector vào cho dễ nhìn bạn nha :))

a) M là trung điểm BC \(\Rightarrow2\overrightarrow{DM}=\overrightarrow{DB}+\overrightarrow{DC}\Leftrightarrow2\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)

 D là trung điểm AM \(\Rightarrow\overrightarrow{DA}=\overrightarrow{MD}\)

\(2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)

b) M là trung điểm BC \(\Rightarrow2\overrightarrow{OM}=\overrightarrow{OB}+\overrightarrow{OC}\)

D là trung điểm AM \(\Rightarrow2\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{OM}\Rightarrow4\overrightarrow{OD}=2\overrightarrow{OA}+2\overrightarrow{OM}=2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)