K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=1+3+3^2+...+3^{100}\)

\(=1+\left(3+3^2+...+3^{100}\right)\)

\(=1+3\left(1+3+...+3^{99}\right)\)

=>A chia 3 dư 1

=>A không chia hết cho 3

27 tháng 10 2020

A=\(3^0+3^1+3^2+3^3+...+3^{11}\)

\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=40+...+3^8\left(1+3+3^2+3^3\right)\)

\(=40\left(1+...+3^8\right)⋮40\)

vậy.......

27 tháng 10 2020

Theo đề ta có:

   \(3^0+3^1+3^2+3^3+3^4+...+3^{11}\)

\(\left(3^0+3^1+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(1\cdot\left(1+3+3^2+3^3\right)+3^4\cdot\left(1+3+3^2+3^3\right)+3^8\cdot\left(1+3+3^2+3^3\right)\)

\(1\cdot40+3^4\cdot40+3^8\cdot40\)\(⋮\)\(40\)

\(\text{ Nên }A\)\(⋮\)\(40\)

\(\text{Vậy }A⋮40\)

1 tháng 1 2019

31 + 32 + 33 + ... + 32012

= (31 + 3+ 33) + (34 + 3+ 36) + ... + (32010 + 32011 + 32012)

= (31 + 3+ 33) + 33.(31 + 3+ 33) + ... + 32009.(31 + 3+ 33)

= 120 + 33.120 + ... + 32009.120

= 120.(1 + 33 + ... + 32009) chia hết cho 120

1 tháng 1 2019

Đặt A = 3^1+3^2+3^3+......+3^2012

A=(3^1+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^2019+3^2010+3^2011+3^2012)

A=3^1(1+119) + 3^5(1+119) + ... +3^2009(1+119)

A= 120 ( 3^1 + 3^5 +.... + 3^2009)

=> A chia hết cho 120

22 tháng 11 2015

A=2^1(1+2)+2^3*(2+1)+2^5(2+1)+2^7*(2+1)+2^9*(2+1)=3*(2+2^3+2^5+2^7+2^9)  chia hết cho 3
 

23 tháng 11 2015

A = 2 + 22 + 23 + ..... + 29 + 210

A = (2 + 22) + (23 + 24) + ... + (29 +  210)

A = (2.1 + 2.2) + (23.1 + 23.2) + ......+(29.1 + 29.2)

A = 2.(1+2) + 23.(1+2) + ..... + 29.(1+2)

A = 2.3 + 23.3 + ...... + 29.3

A = 3.(2+23+.....+29)

Vậy A chia hết cho 3

3 tháng 12 2015

A=(2 + 22+ 23) + (24 + 25 +26) +......+(261+262+263)

A = 14 + 23(2 + 22 + 23) + .............+ 260(2 + 22 + 23)

A=14+23.14 + ..................+ 260 . 14

A= 14(23+..... +260) chia hết cho 14 ( vì 14 chia hết cho 14)

Vậy A chia hết cho 14

 

DD
30 tháng 11 2021

Bài 1: 

\(S=1+3^2+3^4+...+3^{2020}\)

\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)

\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)

\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)

Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).

DD
30 tháng 11 2021

Bài 2: 

\(A=2+2^2+2^3+...+2^{2016}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)

31 tháng 10 2023

  31 + 33 + 35 + ... + 32021

   Xét dãy số: 1; 3; 5;...; 2021

Dãy số trên là dãy số cách đều với khoảng cách là:

    3 - 1 = 2

Số số hạng của dãy số trên là: (2021 - 1) : 2 + 1 =  1011  

Vậy A  có 1011 hạng tử.

   Vì 1011 : 4 =  252 dư 3

Nên nhóm 4 hạng tử liên tiếp của A thành một nhóm thì 

A = (31+33+35)+ (37+ 39+311+313)+...+(32007+32009+32011+32013) + (32015+32017+32019+32021)

A = (3 + 27 + 243)+ 36(3+33+35+37) + ...+32006.(3+33+35+37) + 32014.(3 + 33 + 35+ 37)

A = 273 +36.2460+...+ 32006.2460+...+ 32014.2460

A = 273 + 2460.(36+... + 32006 + 32014)

vì 2460 ⋮ 41 mà 273 : 41 = 6 dư 27 

Vậy A không chia hết  cho 41