Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Ta có: \(a+b+c=2\)
\(\Leftrightarrow\left(a+b+c\right)^2=4\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=2\)
\(\Rightarrow ab+bc+ca=1\)
Thay vào ta được: \(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự CM được: \(b^2+1=\left(b+a\right)\left(b+c\right)\) và \(c^2+1=\left(c+a\right)\left(c+b\right)\)
=> \(M=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)
![](https://rs.olm.vn/images/avt/0.png?1311)
giả sử c chẵn khi đó ta có:
\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)
Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)
Điều này vô lý!
Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c
Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)
Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)
Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)
\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)
\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)
Trước hết, ta có định lý sau:
\(ƯCLN\left(a,b\right)=ƯCLN\left(a,b+k.a\right)\) với \(k\inℤ\) bất kỳ.
Theo đó, ta có \(ƯCLN\left(a,b\right)=ƯCLN\left(a,a-b\right)=ƯCLN\left(a,a+b\right)=1\)
Vì \(ƯCLN\left(a,b\right)=1\) nên \(ƯCLN\left(a^2,b^2\right)=1\) (vì nếu đặt \(a=p_1^{k_1}.p_2^{k_2}...p_n^{k_n}\) và \(b=q_1^{l_1}.q_2^{l_2}...q_m^{l_m}\) với \(p_i,q_j\left(i\ne j;i=1,2,3,...,n;j=1,2,3,...,m\right)\) đôi một khác nhau thì \(a^2,b^2\) cũng sẽ không có ước chung nào khác ngoài 1)
Mà \(ƯCLN\left(a^2,b^2\right)=ƯCLN\left(a^2,a^2+b^2\right)=ƯCLN\left(a^2+b^2,a^2+b^2-2a^2\right)\)
\(=ƯCLN\left(a^2+b^2,a^2-b^2\right)=1\)
Do vậy, P là phân số tối giản với mọi \(a,b\inℤ^+\)
Hơn nữa, với \(a,b\inℤ^+\) thì \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) không thể bằng 1 hay -1, vì khi đó \(\left\{{}\begin{matrix}a-b=\pm1\\a+b=\pm1\end{matrix}\right.\) thì đều suy ra được \(b=0\), vô lý.
Vậy ta có P là phân số tối giản mà mẫu số khác 1 nên không phải là số nguyên. Ta có đpcm.