K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2024

Ta có \(\dfrac{V_{S'.MNP}}{V_{S'.ABC}}=\dfrac{S'M}{S'A}.\dfrac{S'N}{S'B}.\dfrac{S'P}{S'C}=\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{8}\) 

\(\Rightarrow V_{S.MNP}=\dfrac{1}{8}V_{S'.ABC}=\dfrac{1}{8}.\dfrac{1}{2}V_{S'.ABCD}=\dfrac{1}{8}.\dfrac{1}{2}.\dfrac{1}{3}V_{ABCD.A'B'C'D'}\)

\(=\dfrac{1}{48}V_{ABCD.A'B'C'D'}=\dfrac{1}{48}.10^3=\dfrac{125}{6}\left(cm^3\right)\)

\(\Rightarrow V_{S.MNPQ.S'}=4V_{S'.MNP}=4.\dfrac{125}{6}=\dfrac{250}{3}\left(cm^3\right)\)

 

 

 

30 tháng 5 2017

16 tháng 10 2019

ĐÁP ÁN: B

28 tháng 8 2018

3 tháng 8 2019

Chọn đáp án C

Do S. ABCD đều, có trọng tâm G của tam giác SAC cũng là trọng tâm của SBD.

Nên M, N lần lượt là trung điểm của SC, SD.

Do đó

Gọi K là trung điểm của AB, O = AC ∩ BD  do S. ABCD đều nên SO  ⊥ (ABCD)  

ABCD là hình vuông nên có SKO = 60 0  

Xét tam giác SKO vuông tại O có KO = a 2  và SKO = 60 0   suy ra:

NV
7 tháng 1 2024

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1 2024

loading...

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Xét tam giác HAC ta có: GH = 2GA, HK = 2KC suy ra GK // AC hay GK // (ABCD).

b) (MNEF) // (ABCD) do đó MN // AB, NE // BC, EF // CD, MF // AD

Lại có AB // CD, AD // BC suy ra MN // EF, MF // NE.

Suy ra, tứ giác MNEF là hình bình hành.

5 tháng 4 2017

1 tháng 1 2018

5 tháng 2 2019

7 tháng 5 2019