K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
![](https://rs.olm.vn/images/avt/0.png?1311)
TS
8 tháng 5 2016
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
Gọi M, N lần lượt là trung điểm BE, CF và vẽ các đường tròn đường kính BE, CF (nhận M, N làm tâm). Dễ thấy D là giao điểm của (M) và (N).
Kẻ hai đường cao BP và CQ cắt nhau tại K. Khi đó K là trực tâm tam giác ABC. Dễ chứng minh \(KB.KP=KC.KQ\) nên \(P_{K/\left(M\right)}=P_{K/\left(M\right)}\)\(\Rightarrow\) K thuộc trục đẳng phương của (M) và (N) hay DK chính là trục đẳng phương của (M) và (N).
\(\Rightarrow MN\perp DK\).
Mà \(DK\perp BC\Rightarrow\) MN//BC
Gọi S là giao điểm của BE và CF. Khi đó ta có \(\dfrac{SN}{NC}=\dfrac{SM}{MB}\) (do MN//BC). Mà \(NC=NF,MB=ME\) nên \(\dfrac{SN}{NF}=\dfrac{SM}{ME}\)
\(\Leftrightarrow\dfrac{SN}{NF-SN}=\dfrac{SM}{ME-SM}\) \(\Leftrightarrow\dfrac{SN}{SF}=\dfrac{SM}{SE}\)
\(\Rightarrow\) MN//EF (đl Thales đảo)
Do đó EF//BC(//MN), ta có đpcm.