Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+3^2+3^3+..........+3^99+3^100
3A=3^2+3^3+...............+3^100+3^101
=> 3A-A= (3^2+3^3+......+3^100+3^101) - (3+3^2+3^3+........+3^99+3^100)
=> 2A= 3^101 - 3
=>2A+3=3^101
=>3^n=3^101
=> n=101
chán không muốn dùng x2 nữa ^.^ !
a) \(5+3^{x+1}=86\)
\(=>3^{x+1}=86-5\)
\(=>3^{x+1}=81=3^4\)
\(=>x+1=4\) ( cùng cơ số )
\(=>x=4-1\)
\(=>x=3\)
b) \(15:\left(x+2\right)=\left(3^3+3\right):10\)
\(=>15:\left(x+2\right)=\left(27+3\right):10\)
\(=>15:\left(x+2\right)=30:10=3\)
\(=>x+2=15:3\)
\(=>x+2=5\)
\(=>x=5-2\)
\(=>x=3\)
c) \(\left(9x+2\right).4=80\)
\(=>9x+2=80:4\)
\(=>9x+2=20\)
\(=>9x=20-2\)
\(=>9x=18\)
\(=>x=18:9\)
\(=>x=2\)
d) \(\left(245-x\right)+7^2=14\)
\(=>\left(245-x\right)+14=14\)
\(=>245-x=14-14\)
\(=>245-x=0\)
\(=>x=245-0\)
\(=>x=245\)
a).\(541+\left(218-x\right)=735\)
\(218-x=735-541\)
\(218-x=194\)
\(x=218-194\)
\(x=24\)
b).\(5\left(x+35\right)=515\)
\(x+35=515:5\)
\(x+35=103\)
\(x=103-35\)
\(x=68\)
c).\(96-3\left(x+1\right)=42\)
\(3\left(x+1\right)=96-42\)
\(3\left(x+1\right)=54\)
\(\left(x+1\right)=54:3\)
\(\left(x+1\right)=18\)
\(x=18-1\)
\(x=17\)
d)\(12x-33=3^2\cdot3^3\)
\(12x-33=3^5\)
\(12x-33=243\)
\(12x=243+33\)
\(12x=276\)
\(x=276:12\)
\(x=23\)
\(Nhớ\)\(tk\)\(mình\)\(nha\)\(!\)
a, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100
=> 3A = 3( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100)
=> 3A = 3. 3 + 3. 3^2 + 3. 3^3 + ... + 3. 3^99 + 3. 3^100
=> 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101
=> 3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100 )
=> 2A = 3^101 - 3
=> A = \(\dfrac{3^{101}-3}{2}\)
Vậy dạng viết gọn của A là: \(\dfrac{3^{101}-3}{2}\)
b, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100
=> A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )
=> A = 3( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99( 1 + 3 )
=> A = 3. 4 + 3^3. 4 + ... + 3^99. 4
=> A = 4( 3 + 3^3 + ... + 3^99 ) chia hết cho 4
=> A chia hết cho 4
Vậy A chia hết cho 4 ( điều phải chứng minh )
Chúc bạn hoc tốt! ~
Ta có : 32x + 2 = 9x + 3
=> 32x + 2 = 32(x + 3)
=> 32x + 2 = 32x + 6
=> 2x + 2 = 2x + 6
=> 0x = 4
=> x \(\in\varnothing\)
\(3^{2x+2}=9^{x+3}\)
\(\Leftrightarrow9^{x+1}=9^{x+3}\)
\(\Rightarrow x+1=x+3\)
\(\Rightarrow0x=2\)
=> không tồn tại x
a) \(\left(5x+3^4\right).6^8=6^9.3^4\)
\(=>6x+3^4=3^4.6^9:6^8\)
\(=>6x+3^4=3^4.6\)
\(=>6x=6.3^4-3^4\)
\(=>6x=0\)
\(=>x=0:6\)
\(=>x=0\)
a/(5x + 34).68=69.34
(5x + 34) = 69:68.34
5x + 81 = 6.81
5x = 6.81 - 81
5x = 486 - 81
5x = 425
x = 425:5
x = 85
b/92 - 2x = 2.42- 3.4 + 120:15
92 - 2x = 2.16 - 12 + 8
92 - 2x = 32 - 12 + 8
92 - 2x = 28
2x = 92 - 28
2x = 64
x = 64:2
x = 32
c/53.(3x + 2) : 13 = 103: (135:134)
125.(3x + 2) : 13 = 1000:13
125.(3x+2) = 1000:13.13
125.(3x+2) = 1000
3x + 2 = 1000:125
3x + 2 = 8
3x = 8 - 2
3x = 6
x = 6:3
x = 2
Bạn nhớ tick cho mình nhé!
62 : 32 + 52 - 33 . 3
= ( 32 . 22 ) : 32 + 25 - 34
= 32 . 22 : 32 + 35 - 81
= 4 + 35 - 81
= 39 - 81
= -42
\(A=3+3^2+3^3+...+3^{100}\)
=>\(3A=3^2+3^3+...+3^{101}\)
=>\(3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)
=>\(2A=3^{101}-3\)
=>\(2A+3=3^{101}\)
=>\(3^x=3^{101}\)
=>x=101