K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2024

1. Ta có: \(2a=3b\Rightarrow10a=15b\\ 5b=7c\Rightarrow15b=21c\)
\(\Rightarrow10a=15b=21c\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a+5b-7c}{3.21+5.14-7.10}=\dfrac{30}{63}=\dfrac{10}{21}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{21}=\dfrac{10}{21}\Rightarrow a=10\left(tm\right)\\\dfrac{b}{14}=\dfrac{10}{21}\Rightarrow b=\dfrac{20}{3}\left(tm\right)\\\dfrac{c}{10}=\dfrac{10}{21}\Rightarrow c=\dfrac{100}{21}\left(tm\right)\end{matrix}\right.\)

14 tháng 11 2024

3: \(\sqrt{29}>\sqrt{25}=5\)

\(\sqrt{3}>\sqrt{1}=1\)

\(\sqrt{2003}>\sqrt{1936}=44\)

Do đó: \(\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44\)

=>\(\sqrt{29}+\sqrt{3}+\sqrt{2003}>50\)

14 tháng 10 2018

Ta có : \(2a=3b\) \(\Rightarrow\) \(\frac{a}{3}=\frac{b}{2}\) \(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}\)

           \(5b=7c\) \(\Rightarrow\) \(\frac{b}{7}=\frac{c}{5}\) \(\Rightarrow\) \(\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\) \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

                         ( Tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\) \(a=42;b=28;c=20\)

17 tháng 4 2020

Mục tiêu -1000 sp mong giúp đỡ

Đừng khóa nick nha olm

29 tháng 11 2016

Ta có: 2a=3b;5b=7c\(\Leftrightarrow\frac{a}{3}=\frac{b}{2},\frac{b}{7}=\frac{c}{5}\Leftrightarrow\frac{1}{7}\times\frac{a}{3}=\frac{1}{7}\times\frac{b}{2},\frac{b}{7}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)

<=> \(\frac{a}{21}=\frac{b}{14},\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

<=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\) và 3a - 7b + 5c = - 30

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)

Do đó: \(\frac{a}{21}=-2\Rightarrow a=-42\)

\(\frac{b}{14}=-2\Rightarrow-28\)

\(\frac{c}{10}=-2\Rightarrow c=-20\)

Vậy 3 số a,b,c lần lượt là -42;-28 và -20.

30 tháng 7 2016
a=42; b=28; c=20.
30 tháng 7 2016

ta có  3a+5c=7b+30 => 3a+ 5c-7b=30

\(\text{2a=3b}\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

\(\frac{3a}{63}=2\)

3a=126

a=42

\(\frac{7b}{98}=2\)

7b=196

b=28

\(\frac{5c}{50}=2\)

5c=100

c=20

đáp số  a=42; b=28; c=20.

6 tháng 11 2016

Gọi hai số đó là x và y 
Theo bài ra ta có: x+y+x-y+x/y = 38 
hay 2x+ x/y = 38 
Do x chia hết cho y, đặt x =ky, k nguyên dương 
suy ra 2ky+k =38 
hay k(2y+1) = 38 = 2.19 
Do y,k nguyên dương nên k = 2; 2y+1=19 
Suy ra y = 9 
suy ra x= ky = 18 

Vậy 2 số đó là 18 và 9. 

6 tháng 11 2016

goi 2 so can tim la a va b (a,b thuoc Z+)(a>b) 
theo de bai ta co 
a+b+a-b+a/b=38 
<=>2a+a/b=38 
<=>a=38b/(2b-1)=19+19/(2b-1) 
do a thuoc Z+=>19/(2b-1) thuoc Z 
=>(2b-1) thuoc uoc cua 19 
ban tu giai tiep nhe

23 tháng 1 2017

\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{3.7}=\frac{b}{2.7}\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right)\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{7.2}=\frac{c}{5.2}\Rightarrow\frac{b}{14}=\frac{c}{10}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)

=> a = 21k 

     b = 14k

     c = 10k

Thay vào biểu thức 3a + 5c - 7b = 30 , ta có :

3a + 5c - 7b = 30

=> 3.21k + 5.10k - 7.14k = 30

=> 63k + 50k - 98k = 30

=> (63 + 50 - 98)k = 30

=> 15k = 30

=> k = 2

\(\Rightarrow\hept{\begin{cases}a=21k=21.2=42\\b=14k=14.2=28\\c=10k=10.2=20\end{cases}}\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

a/ 

Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$

$\Rightarrow a=2k+1; b=3k+2; c=4k+3$

Khi đó:

$3a+3b-c=50$

$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$

$\Rightarrow 11k+6=50$

$\Rightarrow 11k=44\Rightarrow k=4$

Ta có:

$a=2k+1=2.4+1=9$

$b=3k+2=3.4+2=14$

$c=4k+3=4.4+3=19$

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

b/

$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$

$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$

Áp dụng TCDTSBN:

$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$

$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$

29 tháng 9 2020

1. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}\)

\(=\frac{\left(5z-3x-4y\right)-34}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\frac{x-1}{2}=2\)\(\Rightarrow x-1=4\)\(\Rightarrow x=5\)

\(\frac{y+3}{4}=2\)\(\Rightarrow y+3=8\)\(\Rightarrow y=5\)

\(\frac{z-5}{6}=2\)\(\Rightarrow z-5=12\)\(\Rightarrow z=17\)

Vậy \(x=5\)\(y=5\)và \(z=17\)

29 tháng 9 2020

2. Từ \(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=\frac{a}{21}=\frac{b}{14}\)(1)

Từ \(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

\(=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow a=21.2=42\)\(b=14.2=28\)\(z=10.2=20\)

Vậy \(a=42\)\(b=28\)\(z=20\)