Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
a. \(\Rightarrow\left\{\begin{matrix}\dfrac{-10}{15}=\dfrac{x}{-9}\\\dfrac{-10}{15}=\dfrac{-8}{y}\\\dfrac{-10}{15}=\dfrac{z}{-21}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b. \(\Rightarrow\left\{\begin{matrix}\dfrac{-7}{6}=\dfrac{x}{18}\\\dfrac{-7}{6}=\dfrac{-98}{y}\\\dfrac{-7}{6}=\dfrac{-14}{z}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-21\\y=84\\z=-12\end{matrix}\right.\)
a) Ta có: \(\dfrac{-10}{15}=\dfrac{x}{-9}\)
\(\Rightarrow15x=-10.\left(-9\right)\)
\(\Rightarrow15x=90\)
\(\Rightarrow x=6\)
Khi đó: \(\dfrac{6}{-9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
\(\Rightarrow y=\dfrac{-8\left(-9\right)}{6}=12\)
và \(z=\dfrac{-8\left(-21\right)}{12}\) \(=14\)
Vậy \(\left[{}\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b) Lại có: \(\dfrac{-7}{6}=\dfrac{x}{18}\)
\(\Rightarrow6x=-7.18\)
\(\Rightarrow6x=-126\)
\(\Rightarrow x=-21\)
Khi đó \(\dfrac{-21}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}\)
\(\Rightarrow y=\dfrac{-98.18}{-21}=84\)
và \(z=\dfrac{-14.84}{-98}=12\)
Vậy \(\left[{}\begin{matrix}x=-21\\y=84\\z=12\end{matrix}\right.\)
a) \(\dfrac{x}{3}-\dfrac{4}{y}=\dfrac{1}{5}\)
\(\dfrac{4}{y}\) = \(\dfrac{x}{3}-\dfrac{1}{5}\)
\(\dfrac{4}{y}\) = \(\dfrac{5x-3}{15}\)
=> 4.15 = y.(5x-3)
60 = y.(5x-3)
Ta có bảng
5x-3 | 1 | 60 | 2 | 30 | 3 | 20 | 4 | 15 | 5 | 12 | 6 | 10 |
y | 60 | 1 | 30 | 2 | 20 | 3 | 15 | 4 | 12 | 5 | 10 | 6 |
x | 4/5 | 63/5 | 1 | 33/5 | 6/5 | 23/5 | 7/5 | 18/5 | 8/5 | 3 | 9/5 | 13/5 |
L | L | TM | L | L | L | L | L | L | TM | L | L |
Vậy y=30 và x=1 ; y=5 và x=3
a) ta co:
1/18<x/12<y/9<1/4
=>2/36<x.3/36<y.4/36<9/36
=>x.3thuộc{3;6};y.4thuộc{4;8}
=>x thuộc{1;2};y thuộc{1:2}
b) ta co
7/8<x/40<9/10
=>70/80<x.2/40<72/80
=>x.2 =71
=>x=71/2
Vì x<y \(\Rightarrow\dfrac{1}{x}>\dfrac{1}{y}\\ \Rightarrow\dfrac{1}{x}+\dfrac{1}{y}< \dfrac{1}{x}+\dfrac{1}{x}\\ \Rightarrow\dfrac{1}{5}< \dfrac{2}{x}\\ \Rightarrow x< 10\)
Làm tiếp nhé!!!!!1
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)
\(\dfrac{x}{9}-\dfrac{1}{18}=\dfrac{3}{y}\)
\(\dfrac{2x}{18}-\dfrac{1}{18}=\dfrac{3}{y}\)
\(\dfrac{2x-1}{18}=\dfrac{3}{y}\)
\(\Rightarrow\)(2x-1).y=18.3=54
54 có các ước là: \(\pm1;\pm2;\pm3;\pm6;\pm9;\pm18;\pm27;\pm54\)
*\(\left\{{}\begin{matrix}2x-1=1\\y=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2\\y=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=54\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}2x-1=54\\y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=55\\y=1\end{matrix}\right.\)\(\notin\) N ( Loại)
*\(\left\{{}\begin{matrix}2x-1=2\\y=27\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=3\\y=27\end{matrix}\right.\) \(\notin\) N ( Loại )
*\(\left\{{}\begin{matrix}2x-1=27\\y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=28\\y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=2\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}2x-1=3\\y=18\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=4\\y=18\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=18\end{matrix}\right.\)
*\(\left\{{}\begin{matrix}2x-1=18\\y=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=19\\y=3\end{matrix}\right.\)\(\notin\) N ( Loại )
*\(\left\{{}\begin{matrix}2x-1=6\\y=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=7\\y=9\end{matrix}\right.\)\(\notin\) N ( Loại )
*\(\left\{{}\begin{matrix}2x-1=9\\y=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=10\\y=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
Vậy có các cặp (x,y) t/m đề bài là : (1,54) ; (14,2) ; (2,18) ; (5,6)
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)
=>\(\dfrac{xy-27}{9y}=\dfrac{1}{18}\)
=>\(\dfrac{2\left(xy-27\right)}{18y}=\dfrac{y}{18y}\)
=>2xy-54=y
=>2xy-y=54
=>y(2x-1)=54
mà 2x-1 lẻ
nên \(\left(2x-1;y\right)\in\left\{\left(1;54\right);\left(3;18\right);\left(9;6\right);\left(27;2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(1;54\right);\left(2;18\right);\left(5;6\right);\left(14;2\right)\right\}\)
x/9 - 3/y = 1/18
3/y = x/9 - 1/18
3/y= 2x-1/18
y(2x-1) = 3.18 = 54
2x - 1 là ước lẻ của 54
=> 2x - 1 thuộc{3; 9; 27}
y thuộc {18; 6; 2}
2x thuộc{4; 10; 28}
x thuộc{2; 5; 14}
ta có cặp (x; y) thoả mãn là
(18; 2), (6; 5), (2; 14)