Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
*S ABCD = S ABC + S ACD
Hay
S ABCD = S 1 + S 2 + S 3 + S 4 + S 5 + S 6 + S 7 + S 8
*Vì MB = MC nên:
S1 + S2 = S ABC : 2 ( Tam giác ABM và ABC có chung đường cao hạ từ A và BM = BC : 2 )
*Tương tự: S 7 + S 8 = S ACD : 2 ( Tam giác CED và ACD có chung đường cao hạ từ C và DE = AD : 2 )
*Do đó:
S 1 + S 2 + S 7 + S 8 = S 3 + S 4 + S 5 + S 6 = S ABCD : 2
*Lại có:
S 2 + S 3 = S 5 + S 6 (Hai tam giác BME và CME có chung đường cao hạ từ E và BM = CM)
S 5 + S 8 = S 3 + S 4 (Hai tam giác AME và DME có chung đường cao hạ từ M và ED = EA)
==>S 2 + S 8 = S 4 + S 6
*Vì S 1 + S 7 + (S 2 + S 8) = S 3 + S 5 + (S 4 + S 6) mà S 2 + S 8 = S 4 + S 6
Nên S 1 + S 7 = S 3 + S 5
==>S 3 + S 5 = 3 cm2 + 5 cm2 = 8 cm2
Hay SEHKMN = 8 cm2
Đáp số : 8 cm2
mk trả lời đầu tiên nhớ k nha!
Lời giải:
$\frac{S_{DFI}}{S_{DIC}}=\frac{FI}{IC}$
$\frac{S_{FEI}}{S_{IEC}}=\frac{FI}{IC}$
Đặt $\frac{FI}{IC}=a$ thì:
$S_{DFI}=a\times S_{DIC}$
$S_{FEI}=a\times S_{IEC}$
$S_{DFI}+S_{FEI}=a\times (S_{DIC}+S_{IEC})$
$S_{DEF}=a\times S_{DEC}$
$\frac{AE\times DF}{2}=a\times \frac{DC\times AD}{2}$
$\frac{2\times 2}{2}=a\times \frac{4\times 4}{2}$
$2=a\times 8$
$a=\frac{1}{4}$
Vì $S_{DIC}+S_{DFI}=S_{DFC}=\frac{DF\times DC}{2}=\frac{2\times 4}{2}=4$
Mà tỷ số $\frac{S_{DFI}}{S_{DIC}}=\frac{FI}{IC}=\frac{1}{4}$
Theo bài toán tổng và tỷ suy ra $S_{DIC}=4:(1+4)\times 4=3,2$ (cm vuông)
$S_{IEC}=S_{DEC}-S_{DIC}=8-3,2=4,8$ (cm vuông)
$S_{IEBC}=S_{IEC}+S_{EBC}=4,8+\frac{EB\times BC}{2}=4,8+\frac{2\times 4}{2}=8,8$ (cm vuông)
*Hình,lời giải thì bạn tự làm , có thể sẽ có 1 bạn vẽ hình cho bạn :)
a)
\(AM=\frac{1}{2}AB\Rightarrow S_{AMC}=\frac{1}{2}S_{ABC}\)
\(\Delta AMC.\Delta AMD\Rightarrow S_{AMC}=S_{AMB}\)
Có \(d\left(D;AM\right)=d\left(C;AM\right)\)
b)
\(S_{EMC}=\frac{1}{2}S_{MBC}=\frac{1}{2}.15=7,5\left(cm^2\right)\)
c)
Bạn check lại đề phần c) nhé
c) Mình làm theo đề bạn sử nhé
Gọi O là giao điểm MN và AC
Ta có : AMND là hình bình hành
AE là trọng tâm \(\Rightarrow\)\(\Delta AMN\Rightarrow AE=\frac{2}{3}AO\)
Mà \(AO=\frac{1}{2}AC\Rightarrow AE=\frac{1}{3}AC\)
Chứng minh tương tự ta có :
\(GC=\frac{1}{3}AC\)
\(\Rightarrow EG=\frac{1}{3}AC\)
\(\Rightarrow EG=GC=AE\)
khoan đã chương trình sách mới ak
Sách cũ ko có tôi còn chưa được dạy bài này luôn á
đúng rồi tôi đọc mà hoa cả mắt sách cũ còn chưa thấy bài nào như thế hết trơn lun á đòi gì đâu sách mới
có lí hông...tick nhé