K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2024

   - (\(x+y\)) - (a  - b + c)

= - \(x-y\) - a + b - c

 

 

2 tháng 3 2020

- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :

\(A_{\left(x\right)}=A_{\left(1\right)}=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0.\left(3+4.1+1^2\right)^{2005}=0\)

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .

19 tháng 3 2017

Tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc chính là giá trị của đa thức tại x=1.

Thay x=1 vào đa thức ta có:

A(1)=(3-7+1)2004.(3+4+1)2005

=(-3)2004+82005

18 tháng 3 2017

Ủa? ngonhuminh sao không đưa ra lời giải cụ thể vậy?

Giải:

Đặt \(P\left(x\right)=\left(3-4x+x^2\right)^{2006}.\left(3+4x+x^2\right)^{2007}\)

Sau khi bỏ dấu ngoặc trong \(P\left(x\right)\) ta thu được đa thức \(P\left(x\right)\) có dạng:

\(P\left(x\right)=a_n.x^n+a_{n-1}.x^{n-1}+a_{n-2}.x^{n-2}+...+a_1.x+a_0\)

Khi đó tổng các hệ số của \(P\left(x\right)\) là:

\(a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)

Mà: \(P\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_1+a_0\)

\(\Rightarrow\) Tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là:

\(P\left(x\right)=P\left(1\right)=\left(3-4.1+1^2\right)^{2006}.\left(3+4.1+1^2\right)^{2007}=0\)

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là \(0\)

18 tháng 3 2017

0

4 tháng 4 2020

- Tổng các hệ số của 1 đa thức tại x = 1 .

Nên tổng hệ số của đa thức x là :

\(\left(3-1.4+1\right)^{2006}.\left(3+4.1+1\right)^{2007}=0.0=0\)

Vậy tổng hệ số của đa thức trên là 0.