K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2024

A = 1 + 5^ mấy em ơi?

5 tháng 11 2024

viết đề thiếu

 

17 tháng 9 2017

a/A= \(5^6-10^4=5^4.\left(5^2-2^4\right)=5^4.\left(25-16\right)=5^4.9\)chia hết cho 9

b/\(F=5+5^2+5^3+5^4+5^5+5^6=\left(5+5^2+5^3\right).\left(5^4+5^5+5^6\right)=\left(5+25+125\right)\left(5^4+5^5+5^6\right)=155.\left(5^4+5^5+5^6\right)\)

vì 155 chia hết cho 31 đa thức F chia hết cho 31

2 tháng 9 2019

Sai đề à bn?

Sửa lại đề:

a) (x + 5)2 = (x + 5)(x – 5)

\(\Leftrightarrow\)(x + 5)2 - (x + 5)(x - 5) = 0

\(\Leftrightarrow\)(x + 5)(x - 5 + x + 5) = 0

\(\Leftrightarrow\) (x + 5).10 = 0

\(\Leftrightarrow\) x + 5 = 0

\(\Leftrightarrow\) x = -5

Vậy: x = -5

2 tháng 9 2019

b, A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)

Vậy A chia hết (x + 5)(Với x ≠ -5)

9 tháng 8 2016

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên

       * Vậy A chia hết cho 27

9 tháng 8 2016

Đây là toán lớp 7 chứ toán 8 gì hum
 

19 tháng 9 2017

a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)

23 tháng 6 2015

ta có a=5k+3

Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)

27 tháng 11 2019

A=(x+1)(x+2)(x+3)(x+4)+24 chia hết cho x+5 mới Đúng

27 tháng 11 2019

Quên -24

30 tháng 7 2019

A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)

Vậy A chia hết (x + 5)(Với x ≠ -5)

15 tháng 1 2017

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

\(S=5+5^2+5^3+5^4+...+5^{2004}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(S=5.6+5^3.6+...+5^{2003}.6\)

\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6 

20 tháng 2 2018

S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
        
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2  chia hết cho 65
Vậy S chia hết cho 65