Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
\(A=\frac{4}{n-1}+\frac{6}{n-1}+\frac{3}{n-1}\)
\(=\frac{4+6-3}{n-1}=\frac{7}{n-1}\)
Để A là số tự nhiên
thì n-1 \(\in\) Ư(7) (ước dương)
=>n-1=1 n-1=7
n=2 n=8
Vậy số tự nhiên n lớn nhất để A là số tự nhiên là 8
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
Để thương là số tự nhiên
=> Các trường hợp (a) ; (b) ; (c) phải chia hết
a) n + 6 chia hết cho n - 4
n - 4 + 10 chia hết cho n - 4
=> 10 chia hết cho n - 4
=> n - 4 thuộc Ư(10) = {1 ; 2 ; 5 ; 10}
Xét 4 trường hợp ,ta có :
n - 4 = 1 => n = 5
n - 4 = 2 => n = 6
n - 4 = 5 => n = 9
n - 4 = 10 => n = 14
b) 2n + 12 chia hết cho n + 2
2n + 4 + 8 chia hết cho n + 2
2.(n + 2) + 8 chia hêt cho n + 2
=> 8 chia hết cho n + 2
=> n + 2 thuộc Ư(8) = {1 ; 2 ; 4; 8}
Còn lại giống câu a
c) không biết
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
Để B là số tự nhiên thì n+1 \(⋮\)n+4
Mà n+4 \(⋮\)n+4
\(\Rightarrow\)n+4-(n+1) \(⋮\)n+4
3 \(⋮\)n+4
\(\Rightarrow\)n+4 \(\varepsilon\)Ư(3)={+1;+3}
n+4 | -1 | 1 | -3 | 3 |
n | -5 | -3 | -7 | -1 |
Vậy n \(\varepsilon\){-5;-3;-7;-1}
50+50+50+50+50+50+50+50+50+50+50+200+200+200+200.000.000.000+.....6000.000.000.000.000.000+6000+63000+99999999999999999999999999999=?
Thách ai làm được câu này thì là game thủ Toán
\(n+4⋮n+1\)
=>\(n+1+3⋮n+1\)
=>\(3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)