![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
C = 1/101 + 1/102 + 1/103 + ... + 1/200
Có:
C < 1/101 + 1/101 + 1/101 + ... + 1/101
C < 100 . 1/101
C < 100/101
Mà 100/101 < 1
=> C < 1 (1)
Có:
C > 1/200 + 1/200 + 1/200 + ... + 1/200
C > 100 . 1/200
C > 1/2 (2)
Từ (1) và (2)
=> 1/2<C<1
Ủng hộ nha mk làm tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x + 6 ⋮ n + 2
=> ( n + 2 ) + 4 ⋮ n + 2
Mà n + 2 ⋮ n + 2 ∀ n
=> 4 ⋮ n + 2 => n + 2 ∈ { 1 ; 2 ; 4 }
=> n ∈ { 0 ; 2 } ( do n ∈ N )
![](https://rs.olm.vn/images/avt/0.png?1311)
a, A = 2 + 22 + 23 + 24 +....+ 260
A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)
A = 2.3 + 23.3 +...+ 259.3
A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)
A = 2 + 22 + 23+ 24+...+ 260
A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)
A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)
A = 2.7 + 24.7 +...+258.7
A = 7.(2 + 24 + ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)
A = 2 + 22 + 23 + 24 +...+ 260
A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)
A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)
A = 2.30 + ...+ 257. 30
A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{58}.7\)
\(=7\left(2+2^4+2^{58}\right)⋮7\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15\left(2+2^5+2^{57}\right)⋮15\)
b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{96}.31\)
\(=31\left(1+5^3+...+5^{96}\right)⋮31\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
2+2^2+2^3+...+2^180
=\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{178}+2^{179}+2^{180}\right)\)
=\(2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{178}.\left(1+2+2^2\right)\)
=\(2.7+2^4.7+...+2^{178}.7\)
=\(7.\left(2+2^4+2^7+...+2^{178}\right)⋮7\)
Ta lại có:
2+2^2+2^3+...+2^180
=\(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{176}+2^{177}+2^{178}+2^{179}+2^{180}\right)\)
đặt nhân tử chung r làm tương tự câu trên nhé
b,\(3+3^2+3^3+...+3^{99}\)
=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{98}+3^{99}\right)\)
đặt nhân tử chung r làm tương tự câu đầu nhé
còn chứng minh chia hết cho 13 bạn cứ ghép 3 số liên tiếp vs nhau là được nhân tử chung là 39=13.3
a) ta có: 2 + 2^2 + 2^3 + ...+ 2^180
= (2+2^2+2^3) + (2^4+2^5+2^6) + ...+ (2^178+2^179+2^180)
= 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^178.(1+2+2^2)
= 2.7+2^4.7+...+2^178.7
= (2+2^4+...+2^178).7 chia hết cho 7
chia hết cho 31 bn lm tương tự nha
b) ta có: 3 + 3^2 + 3^3+3^4+...+3^99
= (3+3^2+3^3) + (3^4+3^5+3^6) + ...+ (3^97+3^98+3^99)
= 3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^97.(1+3+3^2)
= 3.13+3^4.13+...+3^97.13
= (3+3^14+...+3^97).13 chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
=13+.....+3^11 chia het cho 13
nen C=1+3+...+3^11 chia het cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
B = 3 + 32 + 33 + ... + 337 + 338 + 339
=> B = 3 . (1 + 3 + 32) + ... + 337 . (1 + 3 + 32)
=> B = 3 . (1 + 3 + 9) + ... + 337 . (1 + 3 + 9)
=> B = 3 . 13 + ... + 337 . 13
=> B = 13 . (3 + ... + 337) \(⋮\)13 (đpcm)
B = 3 + 32 + 33 + 34 +...+339
B = ( 3 + 32 + 33) + (34 + 35 + 36) + ...+ (337 + 338 + 339)
B = 3. (1 + 3 + 32) + 34. (1 + 3 + 32) +...+ 337. (1 + 3 + 32)
B = 3.13 + 34 . 13 +... + 337. 13
B = 13. ( 3 + 34 +...+ 337) \(⋮\)13
Vậy B \(⋮\)13
`A = 1+3+3^2 + ... + 3^101`
`= (1+3+3^2) + (3^3 + 3^4 + 3^5) + ... + (3^99 + 3^100 + 3^101)`
`= 13 + 3^3 . (1+3+3^2) + 3^99 . (1+3+3^2)`
`= 13 + 3^3 . 13 + 3^99 . 13`
`= 13 . (1 + 3^3 + ... + 3^99)`
Do `13 vdots 13`
`=> A vdots 13` (đpcm)
\(A=1+3+3^2+3^3+...+3^{101}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(A=\left(1+3+3^2\right)+\left(3^3.1+3^3.3+3^3.3^2\right)+\left(3^{99}.1+3^{99}.3+3^{99}.3^2\right)\)
\(A=\left(1+3+3^2\right).\left(1+3^3+...+3^{99}\right)\)
\(A=13.\left(1+3^3+3^{99}\right)\)
Vì \(13⋮13\) nên \(\left[13.\left(1+3^3+3^{99}\right)\right]⋮13\)
\(\Leftrightarrow A⋮13\)