Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E O N M K H 1 1 2 2 3 3
a) Vì tam giác BEC vuông ở E\(\Rightarrow\widehat{B1}+\widehat{B2}+\widehat{B3}+\widehat{C1}=90^0\)( phụ nhau )
Mà \(\widehat{B2}=\widehat{B3}\)( BN là phân giác góc ABD )
\(\Rightarrow\widehat{B1}+2.\widehat{B2}+\widehat{C1}=90^0\left(1\right)\)
Vì tam giác DBC vuông ở D \(\Rightarrow\widehat{C1}+\widehat{C2}+\widehat{C3}+\widehat{B1}=90^0\)( phụ nhau )
Mà \(\widehat{C2}=\widehat{C3}\)( CM là tia phân giác góc ACE)
\(\Rightarrow\widehat{C1}+2.\widehat{C2}++\widehat{B1}=90^0\left(2\right)\)
Lấy \(\left(1\right)+\left(2\right)\)ta được:
\(2.\left(\widehat{B1}+\widehat{C1}\right)+2\left(\widehat{B2}+\widehat{C2}\right)=180^0\)
\(2\left(\widehat{B1}+\widehat{B2}+\widehat{C1}+\widehat{C2}\right)=180^0\)
\(2\left(\widehat{OBC}+\widehat{OCB}\right)=180^0\)
\(\widehat{OBC}+\widehat{OCB}=90^0\)
Xét tam giác OBC có: \(\widehat{OBC}+\widehat{OCB}+\widehat{BOC}=180^0\left(đl\right)\)
\(90^0+\widehat{BOC}=180^0\)
\(\widehat{BOC}=90^0\)
\(\Rightarrow OB\perp OC\)
\(\Rightarrow BN\perp CM\)
b) Vì \(BN\perp CM\left(cmt\right)\)
\(\Rightarrow MH\perp KN\)
Xét tứ giác \(MNHK\)có 2 đường chéo MH và KN vuông góc với nhau
\(\Rightarrow MNHK\)là hình thoi

Tự vẽ hình
Xét hai tam giác ADB\((\widehat{ADB}=90^O)\) và AEC\((\widehat{AEC=90^O)}\) có:
AB = AC (do tam giác ABC cân tại A)
\(\widehat{A}\):góc chung
=>Tam giác ADB=tam giác AEC (...)
=>AD=AE ( hai cạnh tương ứng )

a, Góc C + góc KBC = 90 độ, góc C + HAC=90 độ nên góc HBP= góc NAH
HBP+HPB=90 độ, HPB=APQ (đối đỉnh) nên NAH+APQ=90 độ nên AN vuông góc với BQ
b, Tam giác APQ có đường cao cũng là đường phân giác nên tamg giác PAQ cân do đó AN cũng là đường trung trục của tam giác APQ, nên MP=MQ, tương tự sẽ có NP=MP=NP=MQ
do đó MPNQ là hình vuông
bạn ghi vậy ai hiểu