K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2024

a) (3x - 2)(2x + 1) = 0

3x - 2 = 0 hoặc 2x + 1 = 0

*) 3x - 2 = 0

3x = 2

loading...

*) 2x + 1 = 0

2x = -1

loading...

Vậy:

loading...  

7 tháng 10 2024

b) 2x - y = 4

y = 2x - 4 (1)

x + 2y = -3 (2)

Thế (1) vào (2), ta được:

x + 2.(2x - 4) = -3

x + 4x - 8 = -3

5x = -3 + 8

5x = 5

x = 1

Thế x = 1 vào (1), ta được:

y = 2.1 - 4

y = -2

Vậy S = {(1; -2)}

10 tháng 4 2021

a) x^2 - 3x + 2 = 0

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)

=> pt có 2 nghiệm pb

\(x_1=\frac{-\left(-3\right)+1}{2}=2\)

\(x_2=\frac{-\left(-3\right)-1}{2}=1\)

10 tháng 4 2021

a) Dễ thấy phương trình có a + b + c = 0 

nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2

b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)

Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3

Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2

Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )

10 tháng 4 2021

sao khó vậy,mình học lớp 9 mà tính mãi chẳng ra đáp án bài này từ lâu rùi

10 tháng 4 2021

Bài 1 : 

\(2+\sqrt{9}=2+3=5\)

Bài 2 : 

Với \(x\ge0\)

\(B=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}+7}\right):\frac{5}{\sqrt{x}+7}\)

\(=\frac{\sqrt{x}+7-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}:\frac{5}{\sqrt{x}+7}\)

\(=\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+7\right)}.\frac{\sqrt{x}+7}{5}=\frac{1}{\sqrt{x}+2}\)

Bài 3 : 

\(\hept{\begin{cases}x+2y=4\left(1\right)\\x-2y=0\left(2\right)\end{cases}}\)Lấy (1) - (2) ta được : 

\(4y=4\Leftrightarrow y=1\)

Thay y = 1 vào (1) ta được : \(x+2=4\Leftrightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

8 tháng 4 2021

Bài 2 : 

\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)

Lấy phương trình (1) - phương trình (2) ta được : 

\(2x=6\Leftrightarrow x=3\)

Thay x = 3 vào phương trình (2) ta được : 

\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)

Vậy \(\left(x;y\right)=\left(3;1\right)\)

30 tháng 6 2021

1 , a = 5 , b = -7

2 , x = 3 , y = 1

8 tháng 5 2022

\(\left\{{}\begin{matrix}9x-3y=-12\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=-11\\y=3x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

ĐKXĐ : \(y>-5\)

Đặt \(\left(x-2\right)^2=a>0\) và \(\frac{1}{\sqrt{y+5}=b}\)

Hệ phương trình đã cho trở thành : \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}4a+2b=6\\a-2b=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5a=5\\a-2b=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=1\end{cases}}\)( Thỏa mãn )

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\\\sqrt{y+5}=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}=1}\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{y+5}=1\\\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\end{cases}\Leftrightarrow}\hept{\begin{cases}y+5=1\\\orbr{\begin{cases}x=3\\x=1\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=3\\y=-4\end{cases}}\\\hept{\begin{cases}x=1\\y=-4\end{cases}}\end{cases}}}\)

8 tháng 4 2021

ĐKXĐ : y > -5

Đặt \(\hept{\begin{cases}\left(x-2\right)^2=a\\\frac{1}{\sqrt{y+5}}=b\end{cases}\left(a\ge0;b>0\right)}\)

Hpt đã cho trở thành \(\hept{\begin{cases}2a+b=3\\a-2b=-1\end{cases}}\)=> \(a=b=1\left(tm\right)\)

=> \(\hept{\begin{cases}\left(x-2\right)^2=1\\\frac{1}{\sqrt{y+5}}=1\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-4\end{cases}}or\hept{\begin{cases}x=1\\y=-4\end{cases}}\)(tm)

Vậy ... 

3 tháng 4 2023

Bài 1:

loading...

9 tháng 5 2022

a, \(x^2-3x-4=0\)Ta có a - b + c = 1 + 4 - 4 = 0 

Vậy pt có 2 nghiệm x = -1 ; x = 4 

b, \(\left\{{}\begin{matrix}6x-3y=15\\5x+3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=33\\y=2x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

24 tháng 4 2023

loading...  

4 tháng 4 2023

Từ 2x - y - 2 = 0

ta được y = 2x - 2

Thế vào phương trình dưới ta được

3x2 - x(2x - 2)  - 8 = 0

<=> x2 + 2x - 8 = 0

<=> (x - 2)(x + 4) = 0

<=> \(\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Với x = 2 được y = 2

Với x = -4 được y = - 10

Vậy (x;y) = (2;2) ; (-4 ; -10) 

8 tháng 4 2021

Trả lời:

a. xác định a,b:

 vì đồ thị hàm số y=ax+b // đường y=-1/2x+2020

=> a=-1/2

Đồ thị cắt trục hoành tại điểm có tọa độ(-5,0), thay vào ta có:

  0= -1/2.-5 +b => b=-5/2

Đường thẳng d là: y=-1/2 x-5/2

Vì đường thẳng ( d ) : y = ax +b song song với đường thẳng

\(y=-\frac{1}{2}x+2020\Leftrightarrow\)\(\hept{\begin{cases}a=-\frac{1}{2}\\be2020\end{cases}}\)

khi đó phương trình đường thẳng ( d ) có dạng ( d ) :\(y=-\frac{1}{2}x+b,\)với \(be2020\)

Vì ( d ) cắt trục hoành tại điểm có hoành độ bằng -5 nên đường thẳng  ( d ) đi qua điểm ( - 5 ; 0 )

thay tọa độ điểm ( - 5 ; 0 )và phương trình đường thẳng ( d ) ta có :

\(0=-\frac{1}{2}\times\left(-5\right)+b\)

\(\Leftrightarrow0=\frac{5}{2}+b\)

\(\Leftrightarrow b=-\frac{5}{2}\)thỏa mãn

Vậy \(a=-\frac{1}{2}\)và \(b=-\frac{5}{2}\)

bình chọn em với

8 tháng 5 2022

Xét hpt \(\left\{{}\begin{matrix}\dfrac{x}{y}+2.\dfrac{y}{x}=3\left(1\right)\\2x^2-3y=-1\left(2\right)\end{matrix}\right.\) (đkxđ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\))

Từ (1) \(\Leftrightarrow\dfrac{x^2+2y^2}{xy}=3\Rightarrow x^2+2y^2=3xy\Leftrightarrow x^2-3xy+2y^2=0\)\(\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)\(\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\\x=2y\end{matrix}\right.\)

Xét trường hợp \(x=y\), thay vào (2), ta có \(2x^2-3x=-1\Leftrightarrow2x^2-3x+1=0\) (3)

pt (3) có tổng các hệ số bằng 0 nên pt này có 2 nghiệm \(\left[{}\begin{matrix}x_1=1\\x_2=\dfrac{1}{2}\end{matrix}\right.\)(nhận)

Nếu \(x=1\Rightarrow y=1\) (vì \(x=y\)) (nhận)

Nếu \(x=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\) (nhận)

Vậy ta tìm được 2 nghiệm của hpt đã cho là \(\left(1;1\right)\) và \(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)

Xét trường hợp \(x=2y\), thay vào (2), ta có \(2.\left(2y\right)^2-3y=-1\Leftrightarrow8y^2-3y+1=0\) (4)

pt (4) có \(\Delta=\left(-3\right)^2-4.8.1=-23< 0\) nên pt này vô nghiệm.

Vậy hpt đã cho có tập nghiệm \(S=\left\{\left(1;1\right);\left(\dfrac{1}{2};\dfrac{1}{2}\right)\right\}\)